
8. Affine Schemes II

As pointed out in §7, we need a slightly more general notion of a
function than the one given above:

Definition 8.1. Let R be a ring. We define a sheaf of rings OX on
the spectrum X of R as follows. Let U be any open set of X. A section
s ∈ OX(U) is by definition any function

s : U −→
∐
p∈U

Rp,

where s(p) ∈ Rp, which is locally represented by a quotient. More
precisely, given a point q ∈ U , there is an element f ∈ R such that
q ∈ Uf ⊂ U and such that the section s|Uf

is represented by a/fn, for
some a ∈ R and n ∈ N.

An affine scheme is then any locally ringed space isomorphic to
the spectrum of a ring with its associated sheaf. A scheme is a locally
ringed space, which is locally isomorphic, as locally ringed space, to an
affine scheme.

It is not hard to see that OX(U) is a ring (sums and products are
defined in the obvious way) and that we do in fact have a sheaf rather
than just a presheaf.

The key result is the following:

Lemma 8.2. Let X be an affine scheme, isomorphic to the the spec-
trum of R and let f ∈ R.

(1) For any p ∈ X, the stalk OX,p is isomorphic to the local ring
Rp.

(2) The ring OX(Uf ) is isomorphic to Rf .

In particular OX(X) ' R.

Proof. We first prove (1). There is an obvious ring homomorphism

OX,p −→ Rp,

which just sends a germ (g, U) to its value g(p) at p.
On the other hand, there is an obvious ring homomorphism,

R −→ OX,p,
which sends an element r ∈ R to the pair (r,X). Suppose that f /∈ p.
Then (1/f, Uf ) defines an element ofOX,p, and this element is an inverse
of (f,X). It follows, by the universal property of the localisation, that
there is a ring homomorphism,

Rp −→ OX,p,
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which is the inverse map. Hence (1).
Now we turn to the proof of (2). As before there is an obvious ring

homomorphism,

R −→ OX(Uf ),

which induces a ring homomorphism

Rf −→ OX(Uf ).

We have to show that this map is an isomorphism. We first consider
injectivity. Suppose that a/fn ∈ Rf is sent to zero. Then for every
p ∈ SpecR, f /∈ p, the image of a/fn is equal to zero in Rp. For each
such prime p there is an element h /∈ p such that ha = 0 in R. Let
a be the annihilator of a in R. Then h ∈ a and h /∈ p, so that a is
not a subset of p. Since this holds for every p ∈ Uf , it follows that
V (a) ∩ Uf = ∅. But then f ∈

√
a so that f l ∈ a, for some l. It follows

that f la = 0, so that a/fn is zero in Rf . Thus the map is injective.
Now consider surjectivity. Pick s ∈ OX(Uf ). By assumption, we

may cover Uf by open sets Vi such that s is represented by ai/g
ni
i on

Vi. Replacing gi by gni
i we may assume that ni = 1. By definition

gi /∈ p, for every p ∈ Vi, so that Vi ⊂ Ugi . Now since sets of the form
Uh form a base for the topology, we may assume that Vi = Uhi . As
Uhi ⊂ Ugi it follows that V (gi) ⊂ V (hi) so that√

〈hi〉 ⊂
√
〈gi〉.

But then hni
i ∈ 〈gi〉, so that hni

i = cigi. In particular

ai
gi

=
ciai
hni
i

.

Replacing hi by hni
i and ai by ciai, we may assume that Uf is covered

by Uhi , and that s is represented by ai/hi on Uhi .
We have already shown that fn =

∑
bihi, where b1, b2, . . . , bk ∈ R

and Uf can be covered by finitely many of the sets Uhi . Thus we may
assume that we have only finitely many hi. Now on Uhihj = Uhi ∩ Uhj ,
there are two ways to represent s, one way by ai/hi and the other by
aj/hj. By injectivity, we have ai/hi = aj/hj in Rhihj so that for some
n,

(hihj)
n(hjai − hiaj) = 0.

Since there are only finitely many i and j, we may assume that n is
independent of i and j. We may rewrite this equation as

hn+1
j (hni ai)− hn+1

i (hnj aj) = 0.
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If we replace hi by hn+1
i and ai by hni ai, then s is still represented by

ai/hi and moreover
hjai = hiaj.

Let a =
∑

i biai, where fn =
∑

i bihi. Then for each j,

hja =
∑
i

biaihj

=
∑
i

bihiaj

= fnaj.

But then a/fn = aj/hj on Uhj . But then a/fn represents s on the
whole of Uf . �

Note that by (2) of (8.2), we have achieved our aim of constructing
a topological space from an arbitrary ring R, which realises R as a
natural subset of the continuous functions.

Definition 8.3. A morphism of schemes is simply a morphism between
two locally ringed spaces which are schemes.

The gives us a category, the category of schemes. Note that the
category of schemes contains the category of affine schemes as a full
subcategory and that the category of schemes is a full subcategory of
the category of locally ringed spaces.

Theorem 8.4. There is an equivalence of categories between the cat-
egory of affine schemes and the category of commutative rings with
unity.

Proof. Let F be the functor that associates to an affine scheme, the
global sections of the structure sheaf. Given a morphism

(f, f#) : (X,OX) = SpecB −→ (Y,OY ) = SpecA,

of locally ringed spaces then let

φ : A −→ B,

be the induced map on global sections. It is clear that F is then a
contravariant functor and F is essentially surjective by (8.2).

Now suppose that φ : A −→ B is a ring homomorphism. We are
going to construct a morphism

(f, f#) : (X,OX) −→ (Y,OY ),

of locally ringed spaces. Suppose that we are given p ∈ X. Then p
is a prime ideal of B. But then q = φ−1(p) is a prime ideal of A.
Thus we get a function f : X −→ Y . Now if a is an ideal of A, then
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f−1(V (a)) = V (〈φ(a)〉), so that f is certainly continuous. For each
prime ideal p of B, there is an induced morphism

φp : Aφ−1(p) −→ Bp,

of local rings. Now suppose that V ⊂ Y is an open set. We want to
define a ring homomorphism

f#(V ) : OY (V ) −→ OX(f−1(V )).

Suppose first that V = Ug, where g ∈ A. Then OY (V ) = Ag and
f−1(V ) ⊂ Uφ(g). But then there is a restriction map

OX(Uφ(g)) ' Bφ(g) −→ OX(f−1(V )).

On the other hand, composing there is a ring homomorphism

A −→ Bφ(g).

Since the image of g is invertible, by the universal property of the
localisation, there is an induced ring homomorphism

Ag −→ Bφ(g).

Putting all of this together, we have defined f#(V ) when V = Ug.
Since the sets Ug form a base for the topology, and these maps are
compatible in the obvious sense, this defines a morphism

f# : OY −→ f∗OX ,
of sheaves. Clearly the induced map on local rings is given by φp, and
so (f, f#) is a morphism of local rings.

Finally it suffices to prove that these two assignments are inverse.
The composition one way is clear. If we start with φ and construct
(f, f#) then we get back φ on global sections. Conversely suppose that
we start with (f, f#), and let φ be the map on global sections. Given
p ∈ X, we get a morphism of local rings on stalks, which is compatible
with φ and localisation, so that we get a commutative diagram

A
φ- B

Af(p)
? f#p- Bp.

?

Let’s compare f(p) and φ−1(p). If r /∈ f(p) then the image of r in Af(p)
is a unit, so that f#

p (r) is a unit. Hence φ(r) /∈ p, that is, r /∈ φ−1(p).

On the other hand, as f#
p is a local ring homomorphism, it follows that

the inverse image of a unit in Bp is a unit in Af(p). Pick r /∈ φ−1(p).
Then φ(r) /∈ p, and this is sent to a unit in Bp. Thus the image of r in
Af(p) is a unit and so r /∈ f(p). Thus f(p) = φ−1(p).
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Now let’s compare f# and the map g# associated to φ. Their differ-
ence is a morphisms of sheaves,

f# − g# : OY −→ f∗OX ,
This morphism is zero on stalks, as we have seen, so that it is the zero
morphism. Thus f# = g#. �
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