8. Affine Schemes II

As pointed out in §7, we need a slightly more general notion of a function than the one given above:

Definition 8.1. Let R be a ring. We define a sheaf of rings \mathcal{O}_X on the spectrum X of R as follows. Let U be any open set of X. A section $s \in \mathcal{O}_X(U)$ is by definition any function

$$s\colon U\longrightarrow \coprod_{\mathfrak{p}\in U}R_{\mathfrak{p}},$$

where $s(\mathfrak{p}) \in R_{\mathfrak{p}}$, which is locally represented by a quotient. More precisely, given a point $\mathfrak{q} \in U$, there is an element $f \in R$ such that $\mathfrak{q} \in U_f \subset U$ and such that the section $s|_{U_f}$ is represented by a/f^n , for some $a \in R$ and $n \in \mathbb{N}$.

An affine scheme is then any locally ringed space isomorphic to the spectrum of a ring with its associated sheaf. A scheme is a locally ringed space, which is locally isomorphic, as locally ringed space, to an affine scheme.

It is not hard to see that $\mathcal{O}_X(U)$ is a ring (sums and products are defined in the obvious way) and that we do in fact have a sheaf rather than just a presheaf.

The key result is the following:

Lemma 8.2. Let X be an affine scheme, isomorphic to the spectrum of R and let $f \in R$.

- (1) For any $\mathfrak{p} \in X$, the stalk $\mathcal{O}_{X,\mathfrak{p}}$ is isomorphic to the local ring $R_{\mathfrak{p}}$.
- (2) The ring $\mathcal{O}_X(U_f)$ is isomorphic to R_f .

In particular $\mathcal{O}_X(X) \simeq R$.

Proof. We first prove (1). There is an obvious ring homomorphism

$$\mathcal{O}_{X,\mathfrak{p}} \longrightarrow R_{\mathfrak{p}},$$

which just sends a germ (g, U) to its value $g(\mathfrak{p})$ at \mathfrak{p} .

On the other hand, there is an obvious ring homomorphism,

$$R \longrightarrow \mathcal{O}_{X,\mathfrak{p}},$$

which sends an element $r \in R$ to the pair (r, X). Suppose that $f \notin \mathfrak{p}$. Then $(1/f, U_f)$ defines an element of $\mathcal{O}_{X,\mathfrak{p}}$, and this element is an inverse of (f, X). It follows, by the universal property of the localisation, that there is a ring homomorphism,

$$R_{\mathfrak{p}} \longrightarrow \mathcal{O}_{X,\mathfrak{p}},$$

which is the inverse map. Hence (1).

Now we turn to the proof of (2). As before there is an obvious ring homomorphism,

$$R \longrightarrow \mathcal{O}_X(U_f),$$

which induces a ring homomorphism

$$R_f \longrightarrow \mathcal{O}_X(U_f).$$

We have to show that this map is an isomorphism. We first consider injectivity. Suppose that $a/f^n \in R_f$ is sent to zero. Then for every $\mathfrak{p} \in \operatorname{Spec} R$, $f \notin \mathfrak{p}$, the image of a/f^n is equal to zero in $R_\mathfrak{p}$. For each such prime \mathfrak{p} there is an element $h \notin \mathfrak{p}$ such that ha = 0 in R. Let \mathfrak{a} be the annihilator of a in R. Then $h \in \mathfrak{a}$ and $h \notin \mathfrak{p}$, so that \mathfrak{a} is not a subset of \mathfrak{p} . Since this holds for every $\mathfrak{p} \in U_f$, it follows that $V(\mathfrak{a}) \cap U_f = \emptyset$. But then $f \in \sqrt{\mathfrak{a}}$ so that $f^l \in \mathfrak{a}$, for some l. It follows that $f^l a = 0$, so that a/f^n is zero in R_f . Thus the map is injective.

Now consider surjectivity. Pick $s \in \mathcal{O}_X(U_f)$. By assumption, we may cover U_f by open sets V_i such that s is represented by $a_i/g_i^{n_i}$ on V_i . Replacing g_i by $g_i^{n_i}$ we may assume that $n_i = 1$. By definition $g_i \notin \mathfrak{p}$, for every $\mathfrak{p} \in V_i$, so that $V_i \subset U_{g_i}$. Now since sets of the form U_h form a base for the topology, we may assume that $V_i = U_{h_i}$. As $U_{h_i} \subset U_{g_i}$ it follows that $V(g_i) \subset V(h_i)$ so that

$$\sqrt{\langle h_i \rangle} \subset \sqrt{\langle g_i \rangle}.$$

But then $h_i^{n_i} \in \langle g_i \rangle$, so that $h_i^{n_i} = c_i g_i$. In particular

$$\frac{a_i}{g_i} = \frac{c_i a_i}{h_i^{n_i}}.$$

Replacing h_i by $h_i^{n_i}$ and a_i by $c_i a_i$, we may assume that U_f is covered by U_{h_i} , and that s is represented by a_i/h_i on U_{h_i} .

We have already shown that $f^n = \sum b_i h_i$, where $b_1, b_2, \ldots, b_k \in R$ and U_f can be covered by finitely many of the sets U_{h_i} . Thus we may assume that we have only finitely many h_i . Now on $U_{h_ih_j} = U_{h_i} \cap U_{h_j}$, there are two ways to represent s, one way by a_i/h_i and the other by a_j/h_j . By injectivity, we have $a_i/h_i = a_j/h_j$ in $R_{h_ih_j}$ so that for some n,

$$(h_i h_j)^n (h_j a_i - h_i a_j) = 0.$$

Since there are only finitely many i and j, we may assume that n is independent of i and j. We may rewrite this equation as

$$h_j^{n+1}(h_i^n a_i) - h_i^{n+1}(h_j^n a_j) = 0.$$

If we replace h_i by h_i^{n+1} and a_i by $h_i^n a_i$, then s is still represented by a_i/h_i and moreover

$$h_j a_i = h_i a_j.$$

Let $a = \sum_i b_i a_i$, where $f^n = \sum_i b_i h_i$. Then for each j ,
 $h_j a = \sum_i b_i a_i h_j$
 $= \sum_i b_i h_i a_j$
 $= f^n a_j.$

But then $a/f^n = a_j/h_j$ on U_{h_j} . But then a/f^n represents s on the whole of U_f .

Note that by (2) of (8.2), we have achieved our aim of constructing a topological space from an arbitrary ring R, which realises R as a natural subset of the continuous functions.

Definition 8.3. A morphism of schemes is simply a morphism between two locally ringed spaces which are schemes.

The gives us a category, the category of schemes. Note that the category of schemes contains the category of affine schemes as a full subcategory and that the category of schemes is a full subcategory of the category of locally ringed spaces.

Theorem 8.4. There is an equivalence of categories between the category of affine schemes and the category of commutative rings with unity.

Proof. Let F be the functor that associates to an affine scheme, the global sections of the structure sheaf. Given a morphism

$$(f, f^{\#}): (X, \mathcal{O}_X) = \operatorname{Spec} B \longrightarrow (Y, \mathcal{O}_Y) = \operatorname{Spec} A$$

of locally ringed spaces then let

$$\phi \colon A \longrightarrow B$$
,

be the induced map on global sections. It is clear that F is then a contravariant functor and F is essentially surjective by (8.2).

Now suppose that $\phi: A \longrightarrow B$ is a ring homomorphism. We are going to construct a morphism

$$(f, f^{\#}) \colon (X, \mathcal{O}_X) \longrightarrow (Y, \mathcal{O}_Y),$$

of locally ringed spaces. Suppose that we are given $\mathfrak{p} \in X$. Then \mathfrak{p} is a prime ideal of B. But then $\mathfrak{q} = \phi^{-1}(\mathfrak{p})$ is a prime ideal of A. Thus we get a function $f: X \longrightarrow Y$. Now if \mathfrak{a} is an ideal of A, then

 $f^{-1}(V(\mathfrak{a})) = V(\langle \phi(\mathfrak{a}) \rangle)$, so that f is certainly continuous. For each prime ideal \mathfrak{p} of B, there is an induced morphism

$$\phi_{\mathfrak{p}}\colon A_{\phi^{-1}(\mathfrak{p})}\longrightarrow B_{\mathfrak{p}},$$

of local rings. Now suppose that $V \subset Y$ is an open set. We want to define a ring homomorphism

$$f^{\#}(V) \colon \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V)).$$

Suppose first that $V = U_g$, where $g \in A$. Then $\mathcal{O}_Y(V) = A_g$ and $f^{-1}(V) \subset U_{\phi(g)}$. But then there is a restriction map

$$\mathcal{O}_X(U_{\phi(g)}) \simeq B_{\phi(g)} \longrightarrow \mathcal{O}_X(f^{-1}(V))$$

On the other hand, composing there is a ring homomorphism

$$A \longrightarrow B_{\phi(g)}.$$

Since the image of g is invertible, by the universal property of the localisation, there is an induced ring homomorphism

$$A_g \longrightarrow B_{\phi(g)}$$

Putting all of this together, we have defined $f^{\#}(V)$ when $V = U_g$. Since the sets U_g form a base for the topology, and these maps are compatible in the obvious sense, this defines a morphism

$$f^{\#}\colon \mathcal{O}_{Y}\longrightarrow f_{*}\mathcal{O}_{X},$$

of sheaves. Clearly the induced map on local rings is given by $\phi_{\mathfrak{p}}$, and so $(f, f^{\#})$ is a morphism of local rings.

Finally it suffices to prove that these two assignments are inverse. The composition one way is clear. If we start with ϕ and construct $(f, f^{\#})$ then we get back ϕ on global sections. Conversely suppose that we start with $(f, f^{\#})$, and let ϕ be the map on global sections. Given $\mathfrak{p} \in X$, we get a morphism of local rings on stalks, which is compatible with ϕ and localisation, so that we get a commutative diagram

$$\begin{array}{ccc} A & \stackrel{\phi}{\longrightarrow} B \\ & & & \downarrow \\ A_{f(\mathfrak{p})} & \stackrel{f_{\mathfrak{p}}^{\#}}{\longrightarrow} B_{\mathfrak{p}} \end{array}$$

Let's compare $f(\mathfrak{p})$ and $\phi^{-1}(\mathfrak{p})$. If $r \notin f(\mathfrak{p})$ then the image of r in $A_{f(\mathfrak{p})}$ is a unit, so that $f_{\mathfrak{p}}^{\#}(r)$ is a unit. Hence $\phi(r) \notin \mathfrak{p}$, that is, $r \notin \phi^{-1}(\mathfrak{p})$. On the other hand, as $f_{\mathfrak{p}}^{\#}$ is a local ring homomorphism, it follows that the inverse image of a unit in $B_{\mathfrak{p}}$ is a unit in $A_{f(\mathfrak{p})}$. Pick $r \notin \phi^{-1}(\mathfrak{p})$. Then $\phi(r) \notin \mathfrak{p}$, and this is sent to a unit in $B_{\mathfrak{p}}$. Thus the image of r in $A_{f(\mathfrak{p})}$ is a unit and so $r \notin f(\mathfrak{p})$. Thus $f(\mathfrak{p}) = \phi^{-1}(\mathfrak{p})$. Now let's compare $f^{\#}$ and the map $g^{\#}$ associated to ϕ . Their difference is a morphisms of sheaves,

$$f^{\#} - g^{\#} \colon \mathcal{O}_Y \longrightarrow f_*\mathcal{O}_X,$$

This morphism is zero on stalks, as we have seen, so that it is the zero morphism. Thus $f^{\#} = g^{\#}$.