
6. Sheaves

Definition 6.1. Let X be a topological space. A presheaf of groups
F on X is a function which assigns to every open set U ⊂ X a group
F(U) and to every inclusion V ⊂ U a restriction map,

ρUV : F(U) −→ F(V ),

which is a group homomorphism, such that if W ⊂ V ⊂ U , then

ρVW ◦ ρUV = ρUW .

Succintly put, a pre-sheaf is a contravariant functor from Top(X) to
the category (Groups) of groups. Put this way, it is clear what we mean
by a presheaf of rings, etc. The elements of F(U) are called sections.
We almost always denote ρUV (s) = s|V . Uij denotes Ui ∩ Uj.
Example 6.2. Let X be a topological space and let G be a group. Define
a presheaf G as follows. Let U be any open subset of X. G(U) is defined
to be the set of constant functions from X to G. The restriction maps
are the obvious ones.

Definition 6.3. A sheaf F on a topological space is a presheaf which
satisfies the following two axioms:

(1) Given an open cover Ui of U an open subset of X, and a col-
lection of sections si on Ui, such that si|Uij

= sj|Uij
then there

is a section s on U such that s|Ui
= si.

(2) Given an open cover Ui of U an open subset of X, if s is a
section on U such that s|Ui

= 0, then s is zero.

Note that we could easily combine (1) and (2) and require that there
is a unique s, which is patched together from the si. It is very easy to
give lots of examples of sheaves and presheaves. Basically, any collec-
tion of functions is a sheaf.

Example 6.4. Let M be a complex manifold. Then there are a collec-
tion of sheaves on M . The sheaf of holomorphic functions, the sheaf of
C∞-functions and the sheaf of continuous functions. In all cases, the
restrictions maps are the obvious ones, and there are obvious inclusions
of sheaves.

If X is a quasi-affine variety, then let OX be the sheaf of regular
functions. This is a sheaf of rings.

Note however that in general the presheaf defined in (6.2) is not a
sheaf. For example, take X = {a, b} to be the topological space with the
discrete topology and take G = Z2. Let U1 = {a} and U2 = {b} and
suppose s1 = 0 and s2 = 1. Then there is no global constant function
which restricts to both 0 and 1.
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However this is easily fixed. Take F to be the sheaf of locally constant
functions.

Definition 6.5. Let X be a topological space and let F be a presheaf
on X. Given p ∈ X, the collection of open sets which contain p forms
a directed set I. The stalk of F at p, denoted Fp, is the direct limit
over I, limp∈U F(U).

It is useful to untwist this definition. An element of the stalk is a
pair (s, U), such that s ∈ F(U), modulo the equivalence relation,

(s, U) ∼ (t, V )

if there is an open subset W ⊂ U ∩ V such that

s|W = t|W .
In other words, we only care about what s looks like in an arbitrarily

small neighbourhood of p.

Definition 6.6. A ring R is called a local ring if there is a unique
maximal ideal.

Note that when we have a sheaf of rings, the stalk is often a local
ring.

Example 6.7. Let M be a complex manifold of dimension n and let p
be a point of M . Then

OhM,p ' C{z1, z2, . . . , zn},
the ring of convergent power series, since locally about p, M looks like
Cn about zero, and any holomorphic function is determined by its Tay-
lor series. On the other hand if M is a real manifold of dimension n
there is a ring surjective homomorphism

C∞M,p −→ R[[x1, x2, . . . , xn]],

the ring of formal power series, but the kernel is simply huge. In other
words, there are lots of infinitely differentiable functions with a trivial
Taylor series.

Definition-Lemma 6.8. Let X be an affine variety and let p ∈ X.
Then the stalk of the structure sheaf of X at p, OX,p is equal to the

localisation of A(X) at the maximal ideal mp of p ∈ X.

Proof. There is an obvious ring homomorphism

A(X) −→ OX,p,
which just sends a polynomial f to the equivalence class (f,X). Sup-
pose that f /∈ m. Then p ∈ Uf ⊂ X and (1/f, Uf ) represents the
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inverse of (f,X) in the ring OX,p. By the universal property of the
localisation there is a ring homomorphism

A(X)m −→ OX,p,
which is clearly injective. Now suppose that we have an element (σ, U)
of OX,p. Since sets of the form Uf form a basis for the topology, we
may assume that U = Ug. But then σ = f/gn ∈ A(X)g ⊂ A(X)m, for
some f and n. �

Definition 6.9. A map between presheaves is a natural transformation
of the corresponding functors.

Untwisting the definition, a map between presheaves

f : F −→ G
assigns to every open set U a group homomorphism

f(U) : F(U) −→ G(U),

such that the following diagram always commutes

F(U)
f(U)- G(U)

F(V )

ρUV

?
f(V )- G(V ).

σUV

?

Note that this gives us a category of presheaves, together with a full
subcategory of sheaves.

Definition-Lemma 6.10. Let F be a presheaf.
Then the sheaf associated to the presheaf, is a sheaf F+, to-

gether with a morphism of sheaves u : F −→ F+ which is universal
amongst all such morphisms of sheaves: that is, given any morphism
of presheaves

f : F −→ G,
where G is a sheaf, there is a unique induced morphism of sheaves which
makes the following diagram commute

F f- G.

F+

u
?

-

Proof. We just give the construction of F+ and leave the details to
the reader. Let H be the disjoint union of all the stalks of F . Let
U ⊂ X be an open set. A section s of F+ is by definition a function
U −→ H which sends a point p to an element of H, that is, a germ
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s(p) = sp ∈ Fp, which is locally given by sections of F . That is, for
every q ∈ U , we require that there is an open subset V ⊂ U containing
q, and a section t ∈ F(V ) such that (t, V ) represents sp in Fp for all
p ∈ V . �

For example the sheaf associated to the presheaf of constant func-
tions to G, is the sheaf of locally constant functions to G.

Proposition 6.11. Let φ : F −→ G be a morphism of sheaves.
Then φ is an isomorphism if and only if the induced map on stalks

is always an isomorphism.

Proof. One direction is clear. So suppose that the map on stalks is
an isomorphism. It suffices to prove that φ(U) : F(U) −→ G(U) is
an isomorphism, for every open subset U ⊂ X, since then the inverse
morphism φ is given by setting ψ(U) = φ(U)−1.

We first show that φ(U) is injective. Let s ∈ F(U) and suppose that
φ(U)(s) = 0. Then surely φp(sp) = 0, where sp = (s, U) ∈ Fp and
p ∈ U is arbitrary. Since φp is injective by assumption, it follows that
there is an open set Vp ⊂ U containing p such that s|Vp = 0. {Vp}p∈U
is an open cover of U and as F is a sheaf, it follows that s = 0. Hence
φ(U) is injective, for every U .

Now we show that φ(U) is surjective. Suppose that t ∈ F(U). Since
φp is surjective, for every p, we may find an open set p ∈ Up ⊂ U and
a section sp ∈ F(Up) such that φ(Up)(sp) = t|Up . Pick p and q ∈ U
and set V = Up ∩ Uq. Then φ(V )(sp|V ) = φ(V )(sq|V ). Since φ(V ) is
injective, it follows that sp|V = sq|V . As F is a sheaf, it follows that
there is a section s ∈ F(U) such that s|UP

= s. But then φ(U)(s) = t
and so φ(U) is surjective. �

Example 6.12. Let X = C − {0}, let F = OX , the sheaf of holo-
morphic functions and let G = O∗X , the sheaf of non-zero holomorphic
functions.

There is a natural map

φ : F −→ G,
which just sends a function f to its exponential. Then φ is surjective
on stalks; this just says that given a non-zero holmorphic function g,
then log(g) makes sense in a small neighbourhood of any point.

On the other hand φ(X) is not surjective. Indeed z ∈ G(X) is a
function which is not in the image, since log(z) is not globally single
valued.

Definition 6.13. Let f : X −→ Y be a continuous map of topological
spaces. Let F be a sheaf on X. The pushforward of F , denoted
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f∗F , is defined as follows

f∗F(U) = F(f−1(U)),

where U ⊂ Y is an open set.
Let G be a sheaf on Y . The inverse image of G, denoted f−1G, is

the sheaf assigned to the presheaf

U −→ lim
f(U)⊂V

G(V ),

where U is an open subset of X and V ranges over all open subets of
Y which contain f(U).

Definition 6.14. A pair (X,OX) is called a ringed space, if X is a
topological space, and OX is a sheaf of rings. A morphism φ : X −→ Y
of ringed spaces is a pair (f, f#), consisting of a continuous function
f : X −→ Y and a sheaf morphism f# : OY −→ f∗OX .

A locally ringed space, is a ringed space (X,OX) such that in
addition every stalk OX,x of the structure sheaf is a local ring. A mor-
phism of locally ringed spaces is a morphism of ringed spaces, such that
for every point x ∈ X, the induced map

f#
x : OY,y −→ OX,x,

where y = f(x) is a morphism of local rings (that is, the inverse image
of the maximal ideal of OY,y is the maximal ideal of OX,x).

Note that we get a category of ringed spaces, whose objects are ringed
spaces and whose morphisms are morphisms of ringed spaces. Further
the category of locally ringed spaces is a subcategory, not necessarily
a full subcategory.

Definition 6.15. Let (X,OX) be a ringed space. An OX-module is a
sheaf F such that for every open set U ⊂ X, F(U) has the structure of
an OX(U)-module, compatible with the restriction map, in an obvious
way.

Using (6.10) we may define various natural operations on sheaves.
For example, let F and G be two OX-modules. The tensor product of
F and G, denoted F ⊗

OX

G, is the sheaf associated to the presheaf

U −→ F(U) ⊗
OX(U)

G(U),

and curly hom, denoted HomOX
(F ,G), is the sheaf associated to the

presheaf

U −→ HomOU=OX |U (F|U ,G|U).
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Let f : F −→ G be a morphism of sheaves. The kernel of f is the
sheaf which assigns to every open set U the kernel of the homomorphism
f(U) : F(U) −→ G(U). Similarly the image is the sheaf associated
to the presheaf which assigns to every open set U the image of the
homomorphism f(U) : F(U) −→ G(U). We say that φ is injective if
and only if Ker(φ) = 0 and we say that φ is surjective if and only if
Im(φ) = G.

Given a morphism of ringed spaces φ : X −→ Y , and a sheaf G ofOY -
modules, the pullback of G, denoted φ∗G, is the sheaf of OX-modules,

φ−1G ⊗
f−1OY

OX .
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