
5. Coordinate rings

Recall the following version of the Nullstellensatz:

Theorem 5.1 (Weak Nullstellensatz). Let K be an algebraically closed
field.

Then an ideal m / R = K[x1, x2, . . . , xn] is maximal if and only if it
has the form

mp = 〈x1 − a1, x2 − a2, . . . , xn − an〉,
for some point p = (a1, a2, . . . , an) ∈ Kn.

Note that with this formulation it is clear why we need K to be
algebraically closed. Indeed I = 〈x2 + 1〉 over R is in fact maximal and
the vanishing locus is empty.

Another way to restate the Nullstellensatz is to observe that it estab-
lishes an inclusion reversing correspondence between ideals and closed
subsets of An. However this is just the tip of the iceberg.

Definition 5.2. Let X ⊂ An be a closed subset.
The coordinate ring of X, denoted A(X), is the quotient

K[X]/I(X).

Corollary 5.3. Let X ⊂ An be an affine subvariety.
There is a correspondence between the points of X and the maximal

ideals of the coordinate ring A(X).

Proof. Recall that there is a correspondence between ideals in R =
K[x1, x2, . . . , xn] containing I and ideals in the quotient R/I. So there
is a correspondence between maximal ideals of R/I and maximal ideals
of R containing I.

But an ideal

mp = 〈x1 − a1, x2 − a2, . . . , xn − an〉,
contains I if and only if p ∈ X and so we are done by (5.1). �

In fact this correspondence is natural. To prove this, we have to
reinterpret the coordinate ring.

Proposition 5.4. If X ⊂ An is an affine variety then the ring of
regular functions OX(X) is isomorphic to the coordinate ring.

Proof. Let π : K[X] −→ OX(X) be the map which sends a polynomial
f to the obvious regular function φ, φ(x) = f(x). It is clear that π is a
ring homomorphism, with kernel I(X). It suffices, then, to prove that
π is surjective.
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Let φ be a regular function on X. By definition there is an open cover
Ui of X and rational functions fi/gi such that φ is locally given by fi/gi.
As X is Noetherian, we may assume that each Ui is irreducible. We
may assume that Ui = Uhi

for some regular function hi, as such subsets
form a base for the topology. Replacing fi by fihi and gi by gihi we
may assume that fi and gi vanish outside of Ui. There are two cases;
Ui ∩ Uj is non-empty or empty.

Suppose that Ui ∩ Uj is non-empty. As Ui is irreducible it follows
that Ui ∩Uj is a dense subset of Ui. Now fi/gi = fj/gj as functions on
Ui ∩ Uj and so figj = fjgi as functions on Ui ∩ Uj. As these functions
are continuous, figj = fjgi on Ui. Suppose that Ui∩Uj is empty. Then
the identity figj = fjgi holds on Ui as both sides are zero.

By assumption, the common zero locus of {gi} is empty. Thus, by
the Nullstellensatz, there are polynomials h1, h2, . . . , hn such that

1 =
∑
i

gihi.

Set f =
∑

i fihi. I claim that the function

x −→ f(x),

is the regular function φ. It is enough to check this on Uj, for every j.
We have

fgj =

(∑
i

figj

)
hi

=
∑
i

(figj)hi

=
∑
i

(fjgi)hi

= fj
∑
i

gihi = fj. �

Note that this result implies that the working definition of a mor-
phism between affine varieties is correct. Indeed, simply projecting
onto the jth factor, it is clear that if the map is given as

(x1, x2, . . . , xm) −→ (f1(x), f2(x), . . . , fn(x)),

then each fj(x) is a regular function. By (5.4), it follows that fj(x) is
given by a polynomial.

Lemma 5.5. There is a contravariant functor A from the category of
affine varieties over K to the category of commutative rings. Given
an affine variety X we associate the ring OX(X). Given a morphism
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f : X −→ Y of affine varieties, A(f) : OY (Y ) −→ OX(X), which sends
a regular function φ to the regular function A(f)(φ) = φ ◦ f .

It is interesting to describe the image of this functor. Clearly the
ring A(X) is an algebra over K (which is to say that it contains K,
so that we can multiply by elements of K). Further the ring A(X)
is a quotient of the polynomial ring, so that it is a finitely generated
algebra over K. Also since the ideal I(X) is radical, the ring A(X)
does not have any nilpotents.

Definition 5.6. Let R be a ring. A non-zero element r of R is said to
be nilpotent if there is a positive integer n such that rn = 0.

Clearly if a ring has a nilpotent element, then it is not an integral
domain.

Theorem 5.7. The functor A is an equivalence of categories between
the category of affine varieties over K and the category of finitely gen-
erated algebras over K, without nilpotents.

Proof. First we show that A is essentially surjective. Suppose we
are given a finitely generated algebra A over K. Pick generators
ξ1, ξ2, . . . , ξn of A. Define a ring homomorphism

π : K[x1, x2, . . . , xn] −→ A,

simply by sending xi to ξi. It is easy to check that π is an algebra
homomorphism. Let I be the kernel of π. Then I is radical, as A
has no nilpotents. Let X = V (I). Then the coordinate ring of X is
isomorphic to A, by construction. Thus A is essentially surjective.

To prove the rest, it suffices to prove that if X and Y are two affine
varieties then A defines a bijection between

Hom(X, Y ) and Hom(OY (Y ),OX(X)).

To prove this, we may as well fix embeddings X ⊂ Am and Y ⊂ An.
In this case A naturally defines a map between

Hom(X, Y ) and Hom(A(Y ), A(X)),

which we continue to refer to as A. It suffices to prove that there is a
map

B : Hom(A(Y ), A(X)) −→ Hom(X, Y ),

which is inverse to the map

A : Hom(X, Y ) −→ Hom(A(Y ), A(X)).

Suppose we are given a ring homomorphism α : A(Y ) −→ A(X). De-
fine a map

B(α) : X −→ Y,
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as follows. Let y1, y2, . . . , yn be coordinates on Y ⊂ An. Let f1, f2, . . . , fn
be the polynomials on An, defined by α(yi) = fi. Then define B(α) by
the rule

(x1, x2, . . . , xm) −→ (f1, f2, . . . , fn).

Clearly this is a morphism. We check that the image lies in Y . Suppose
that p ∈ X. We check that q = (f1(p), f2(p), . . . , fn(p)) ∈ Y . Pick
g ∈ I(Y ). Then

g(q) = g(f1(p), f2(p), . . . fn(p))

= g(α(y1)(p), α(y2)(p), . . . , α(yn)(p))

= α(g)(p)

= 0.

Thus q ∈ Y and we have defined the map B.
We now check that B is the inverse of A. Suppose that we are

given a morphism f : X −→ Y . Let α = A(f). Suppose that f is
given by (f1, f2, . . . , fn). Then α(yi) = yi ◦ f = fi. It follows easily
that B(α) = f . Now suppose that α : A(Y ) −→ A(X) is an algebra
homomorphism. Then B(α) is given by (f1, f2, . . . , fn) where fi =
α(yi). In this case A(f)(yi) = fi. As y1, y2, . . . , yn are generators of
A(Y ), we have α = A(B(α)). �

(5.7) raises an interesting question. Can we enlarge the category of
affine varieties so that we get every finitely generated algebra over K
and not just those without nilpotents. In fact, why stop there? Can
we find a class of geometric objects, such that the space of functions on
these objects, gives us any ring whatsoever (not nec. finitely generated,
not nec. over K). Amazingly the answer is yes, but to do this we need
the theory of schemes.
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