4. Morphisms

We adopt the following working definition of a morphism between affine varieties.

Definition 4.1. A morphism

$$
f: V \longrightarrow W
$$

between two affine varieties, where $V \subset \mathbb{A}^{m}$ and $W \subset \mathbb{A}^{n}$ is given by picking a collection of n polynomials $f_{1}, f_{2}, \ldots, f_{n} \in K\left[x_{1}, x_{2}, \ldots, x_{m}\right]$ such that

$$
f(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right) \in W,
$$

for every $x \in V$.
Note that this gives us a category. The category of affine varieties, with maps given by morphisms.

Example 4.2. The map

$$
f: \mathbb{A}^{1} \longrightarrow \mathbb{A}^{2},
$$

given by

$$
t \longrightarrow\left(t, t^{2}\right)
$$

is a morphism.
It is interesting and instructive to look at the image. If we pick coordinates (x, y) on \mathbb{A}^{2} then it is not too hard to check that the image is $C=V\left(y-x^{2}\right)$.

Now consider the morphism

$$
C \longrightarrow \mathbb{A}^{1} \quad \text { given by } \quad(x, y) \longrightarrow x .
$$

This is a morphism and in fact it is pretty easy to see that the composition either way is the identity, so that it is the inverse of the first morphism and C is isomorphic to \mathbb{A}^{1}.

This example has many interesting generalisations. For example we can look at the morphism:

Example 4.3.

$$
\mathbb{A}^{1} \longrightarrow \mathbb{A}^{3}
$$

given as

$$
t \longrightarrow\left(t, t^{2}, t^{3}\right)
$$

The image is $C=V\left(y-x^{2}, z-x^{3}\right)$ and projection down to the x-axis is the inverse map.

It turns out that both the nodal and cuspidal cubic can be parametrised.

Example 4.4. Consider the map

$$
f: \mathbb{A}^{1} \longrightarrow \mathbb{A}^{2},
$$

given by

$$
t \longrightarrow\left(t^{2}-1, t\left(t^{2}-1\right)\right)
$$

The image lies in the nodal cubic:

$$
C=V\left(y^{2}-x^{2}-x^{3}\right) \subset \mathbb{A}^{2},
$$

since

$$
x^{2}+x^{3}=x^{2}(x+1)=\left(t^{2}-1\right)^{2} t^{2}=t\left(t^{2}-1\right)^{2}=y^{2} .
$$

But in fact, if $y^{2}=x^{2}+x^{3}$ then either $x=0$ in which case $y=0$ and this is the image of $t= \pm 1$ or we put $t=y / x$, in which case it is easy to check that $f(t)=(x, y)$.

Example 4.5. Consider the map

$$
g: \mathbb{A}^{1} \longrightarrow \mathbb{A}^{2}
$$

given by

$$
t \longrightarrow\left(t^{2}, t^{3}\right)
$$

The image lies in the cuspidal cubic:

$$
C=V\left(y^{2}-x^{3}\right) \subset \mathbb{A}^{2} .
$$

But in fact, if $y^{2}=x^{3}$ then either $x=0$ in which case $y=0$ and this is the image of $t=0$ or we put $t=y / x$, in which case it is easy to check that $f(t)=(x, y)$.

In all of these examples, note that the image is a closed subset. However

Example 4.6. Let $C=V(x y-1) \subset \mathbb{A}^{2}$ and consider the morphism

$$
C \longrightarrow \mathbb{A}^{1} \quad \text { given by } \quad(x, y) \longrightarrow x .
$$

The image is the set of all non-zero elements of \mathbb{A}^{1}. This is an open subset not a closed subset.

Definition 4.7. If $U \subset V \subset \mathbb{A}^{n}$ is an open subset of the affine subvariety V then we say that U is quasi-affine.

Remark 4.8. Note that an open subset of a closed subset is the same as a locally closed subset (that is, U is the intersection of an open subset and a closed subset).

It seems natural to wonder if quasi-affine varieties are closed under taking the image.

Example 4.9. Consider the morphism

$$
f: \mathbb{A}^{2} \longrightarrow \mathbb{A}^{2} \quad \text { given by } \quad(x, y) \longrightarrow(x y, y)
$$

Let $(a, b) \in \mathbb{A}^{2}$ be a point in the target \mathbb{A}^{2}. If $b \neq 0$ then $(x, y)=(a / b, b)$ maps to (a, b). If $f(x, y)=(a, 0)$ then $y=0$ so that $a=x y=0$. Thus the image consists of the open subset where $y \neq 0$ union the origin. It is not hard to see that this is not quasi-affine, that is this set is not the intersection of an open and a closed set.

How should one define morphisms for quasi-affine varieties? Well, the natural thing to do is to restrict morphisms from the closure, which is an affine variety. But consider the hyperbola, $C=V(x y-1)$. The map $(x, y) \longrightarrow x$ is equivalent to the map $(x, y) \longrightarrow 1 / y$, since $x=1 / y$ on C. So it is more natural to define a morphism as something which is locally the restriction of a collection of rational functions.

Definition 4.10. Let

$$
f: X \longrightarrow Y
$$

be a map between two quasi-affine varieties $X \subset \mathbb{A}^{m}$ and $Y \subset \mathbb{A}^{n}$. We say that f is a morphism, if there is an open affine cover U_{i} for X such that for every i the restriction $f_{i}=\left.f\right|_{U_{i}}$

$$
f_{i}: U_{i} \longrightarrow Y,
$$

is given by a collection of rational functions, g_{j} / h_{j},

$$
\left(x_{1}, x_{2}, \ldots, x_{m}\right) \longrightarrow\left(g_{1} / h_{1}, g_{2} / h_{2}, \ldots g_{n} / h_{n}\right)
$$

where none of the h_{j} are zero on U_{i}.
Definition-Lemma 4.11. Let $V \subset \mathbb{A}^{n}$ be an affine variety and let f be a polynomial. Let

$$
U_{f}=\{x \in V \mid f(x) \neq 0\} .
$$

Then the quasi-affine variety U_{f} is isomorphic to an affine variety.
Proof. Let $W \subset \mathbb{A}^{n+1}$ be the closed subset defined by the ideal of V together with the polynomial $y f-1$. Define a morphism

$$
\phi: W \longrightarrow V
$$

given by

$$
\left(x_{1}, x_{2}, \ldots, x_{n}, y\right) \longrightarrow\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

The image is contained in U_{f}, since if we can find y such that $y f(x)=1$ then $f(x) \neq 0$.

Define a morphism

$$
U_{f} \underset{3}{\longrightarrow} W
$$

given by

$$
\psi:\left(x_{1}, x_{2}, \ldots, x_{n}\right) \longrightarrow\left(x_{1}, x_{2}, \ldots, x_{n}, 1 / f\right)
$$

Then it is not hard to see that ϕ and ψ are inverses of each other.
Definition-Lemma 4.12. Let X be a quasi-affine variety. A regular function is a morphism $X \longrightarrow \mathbb{A}^{1}=K$.

The set of all regular functions $\mathcal{O}_{X}(X)$ is a K-algebra.
Proof. Clear.
It seems worthwhile to point out that at this point one can state the very famous:

Conjecture 4.13 (Jacobian conjecture). Let

$$
\phi: \mathbb{A}^{2} \longrightarrow \mathbb{A}^{2}
$$

be a morphism, given by

$$
(x, y) \longrightarrow(f, g)
$$

ϕ is an isomorphism if and only if the Jacobian

$$
J(\phi)=\left|\begin{array}{ll}
f_{x} & f_{y} \\
g_{x} & g_{y}
\end{array}\right|
$$

is a non-zero constant.
Remark 4.14. It is easy to show that if ϕ is an isomorphism then the Jacobian $J(\phi)$ is a non-zero constant.

