
3. Categories and Functors

We recall the definition of a category:

Definition 3.1. A category C is the data of two collections. The first
collection is called the objects of C and is denoted Obj(C). Given
two objects X and Y of C, we associate another collection Hom(X, Y ),
called the morphisms between X and Y . Further we are given a law
of composition for morphisms: given three objects X, Y and Z, there
is an assignment

Hom(X, Y )× Hom(Y, Z) −→ Hom(X,Z).

Given two morphisms, f ∈ Hom(X, Y ) and g ∈ Hom(Y, Z), g ◦ f ∈
Hom(X,Z) denotes the composition. Further this data satisfies the
following axioms:

(1) Composition is associative,

h ◦ (g ◦ f) = (h ◦ g) ◦ f,
for all objects X, Y , Z, W and all morphisms f : X −→ Y ,
g : Y −→ Z and h : Z −→ W .

(2) For every object X, there is a special morphism i = iX ∈
Hom(X,X) which acts as an identity under composition. That
is for all f ∈ Hom(X, Y ),

f ◦ iX = f = iY ◦ f.
We say that a category C is called locally small if the collection of

morphisms is a set. If in addition the collection of objects is a set, we
say that C is small.

There are an abundance of categories:

Example 3.2. The category (Sets) of sets and functions; the category
of (Groups) groups and group homomorphisms; the category (Vec) of
vector spaces and linear maps; the category (Top) of topological spaces
and continuous maps; the category (Rings) of rings and ring homomor-
phisms. All of these are locally small categories.

Let X be a topological space. We can define a small category TopX
associated to X as follows. The objects of TopX are simply the open
subsets of X. Given two open subsets U and V ,

Hom(U, V ) =

{
iUV if U ⊂ V

∅ otherwise.

Here iUV is a formal symbol. Composition of morphisms is defined in
the obvious way (in fact the definition is forced, there are no choices to
be made).
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Definition 3.3. We say that a category D is a subcategory of C if every
object of D is an object of C and for every pair of objects X and Y of
D, HomD(X, Y ) is a subset of HomC(X, Y ) (that is, every morphism
in D is a morphism in C). The identity and composition of morphisms
should come out the same.

We say that D is a full subcategory of C, if for every pair of objects
X and Y of D, HomD(X, Y ) is equal to HomC(X, Y ).

The category of finite sets is a full subcategory of the category (Sets)
of sets. Similarly the category of finite dimensional linear spaces is a
full subcategory of the category (Vec) of vector spaces. By comparison
the category (Groups) of groups is a subcategory of the category (Sets)
of sets (this example is a bit of a cheat) but it is not a full subcategory.
In other words not every function is a group homomorphism.

It is easy construct new categories from old ones:

Definition 3.4. Given a category C, the opposite category, denoted
Cop, is the category, whose objects are the same as C, but whose mor-
phisms go the other way, so that

HomCop(X, Y ) = HomC(Y,X).

Definition 3.5. The inverse of a morphism f : X −→ Y is a mor-
phism g : Y −→ X, such that f ◦ g and g ◦ f are both the identity map.
If the inverse of f exists, then we say that f is an isomorphism and
that X and Y are isomorphic.

Definition 3.6. Let C and D be two categories. A covariant functor
from F from C to D assigns to every object X of C an object F (X) of D
and to every morphism f : X −→ Y in C a morphism F (f) : F (X) −→
F (Y ) in C, compatible with composition and the identity.

That is

F (g ◦ f) = F (g) ◦ F (f) and F (iX) = iF (X).

A contravariant functor F is the same as covariant functor, ex-
cept that arrows are reversed,

F (f) : F (Y ) −→ F (X),

and
F (g ◦ f) = F (f) ◦ F (g).

In other words a contravariant functor F : C −→ D is the same as a
covariant functor F : Cop −→ D

It is easy to give examples of functors. Let

F : (Rings) −→ (Groups),
2



be the functor which assigns to every ring R, the underlying additive
group, and to every ring homomorphism f , the corresponding group
homomorphism (the same map of course).

It is easy to check that F is indeed a functor; for obvious reasons it
is called a forgetful functor and there are many such functors.

Note that we may compose functors in the obvious way and that
there is an identity functor. Slightly more interestingly there is an
obvious contravariant functor from a category to its opposite.

There are three non-trivial well-known functors. First there is a
functor, denoted H∗, from the category (Top) of topological spaces
to the category of (graded) groups, which assigns to every topological
space its singular homology. Similarly there is a contravariant functor
from category (Top) of topological spaces to the category of (graded)
rings, which assigns to every topological space its singular cohomology.

The second and third are much more general.

Definition 3.7. Let F : C −→ D be a functor. We say that F is
faithful if for every f and g, morphisms in C, F (f) = F (g) iff f = g.
We say that F is full if for every morphism h : F (X) −→ F (Y ) in
D, there is a morphism f in C such that F (f) = h. We say that F is
essentially surjective if for every object A in D there is an object
X in C such that A is isomorphic to F (X).

We say that F is an equivalence of categories if F is fully faithful
and essentially surjective.

For example, let D be the category of finite dimensional vector spaces
over a field K. Let C be the category whose objects are the natural
numbers, and such that the set of morphisms between two natural
numbers m and n, is equal to the set of m × n matrices, with the
obvious rule of composition. Then C is naturally a full subcategory of
D (assign to n the “standard” vector space Kn) and the inclusion map,
considered as a functor, is an equivalence of categories. Note however
that there is no functor the other way.

More generally, given a categoryD, one may form a quotient category
C. Informally the objects and morphisms of C are equivalence classes
of objects of D, under isomorphism.

We now turn to the third important functor. We first note that given
two categories C and D, where C is locally small, the collection of all
functors from C to D is a category, denoted Fun(C,D). The objects of
this category are simply functors from C to D. Given two functors F
and G, a morphism between them is a natural transformation:

Definition 3.8. Let F and G be two functors from a category C to a
category D. A natural transformation u from F to G assigns to
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every object X of C a morphism uX : F (X) −→ G(X) such that for
every morphism f : X −→ Y in C the following diagram commutes

F (X)
F (f)- F (Y )

G(X)

uX

?
G(f)- G(Y ).

uY

?

It is easy to check that we may compose natural transformations,
that this composition is associative and that the natural transformation
which assigns to every object X, the identity map from F (X) to F (X)
acts as an identity, so that Fun(C,D) is indeed a category.

Suppose that C is a locally small category. Let Y be an object of
C. I claim that we get a functor hY : C −→ (Sets). Given an object
X of C, we associate the set hY (X) = Hom(X, Y ). Given a morphism
f : X −→ X ′, note that we get a map

hY (f) : Hom(X ′, Y ) −→ Hom(X, Y ),

which takes a morphism g and assigns the morphism hY (f)(g) = g ◦ f .
It is easy to check that hY is a contravariant functor. On the other
hand, varying Y , I claim we get a functor

h : C −→ Fun(Cop, (Sets)).

At the level of objects, the definition of this functor is obvious. Given
Y ∈ C we assign the object hY ∈ Fun(Cop, (Sets)). On the other
hand, given a morphism f : Y −→ Y ′, I claim that we get a natural
transformation h(f) between the two functors hY and hY ′ going from
Cop to (Sets). Thus given an object X in C, we are supposed to give a
morphism

h(f)X : hY (X) = Hom(X, Y ) −→ hY ′(X) = Hom(X, Y ′).

The definition of h(f)X is clear. Given g ∈ Hom(X, Y ), send this to
h(f)X(g) = f ◦ g. It is easy to check that h(f) is indeed a natural
transformation and that h is a functor. More significantly:

Theorem 3.9 (Yoneda’s Lemma). h is fully faithful.

The proof is left as an exercise for the reader. Yoneda’s Lemma thus
says that if we want to understand the category C, we can think of it
as a subcategory of the category of contravariant functors from C to
the category (Sets) of sets.

In these terms obviously the must fundamental question is to ask
which of these functors is in the image:
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Definition 3.10. We say that the functor F : Cop −→ (Sets) is rep-
resentable (by Y ) if it is isomorphic to hY , for some object Y of C.

By Yoneda’s Lemma, if F is representable by Y then Y is determined
up to unique isomorphism.
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