2. Nullstellensatz

We will need the notion of localisation, which is a straightforward generalisation of the notion of the field of fractions.

Definition 2.1. Let R be a ring. We say that a subset S of R is multiplicatively closed if for every s_{1} and s_{2} in $S, s_{1} s_{2} \in S$, that is,

$$
S \cdot S \subset S
$$

Definition-Lemma 2.2. Let R be a ring and let S be a multiplicatively closed subset, which contains 1 but not zero. The localisation of R at S, denoted R_{S}, is a ring R_{S} together with a ring homomorphism

$$
\phi: R \longrightarrow R_{S}
$$

with the property that for every $s \in S, \phi(s)$ is a unit in R_{S}, which is universal amongst all such rings. That is, given any morphism

$$
\psi: R \longrightarrow T,
$$

with the property that $\psi(s)$ is a unit, for every $s \in S$, there is a unique ring homomorphism

Proof. This is almost identical to the construction of the field of fractions, and so we will skip most of the details. Formally we define R_{S} to be the set of all pairs (r, s), where $r \in R$ and $s \in S$, modulo the equivalence relation,

$$
\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right) \quad \text { iff } \quad s\left(r_{1} s_{2}-r_{2} s_{1}\right) \text { for some } s \in S
$$

We denote an equivalence class by $[r, s]$ (or more informally by r / s). Addition and multiplication are defined in the obvious way.

Note that if R is an integral domain, then $S=R-\{0\}$ is multiplicatively closed and the localisation is precisely the field of fractions. Note also that as we are not assuming that R is an integral domain, we need to throw in the extra factor of s, in the definition of the equivalence relation and the natural map $R \longrightarrow R_{S}$ is not necessarily injective.

Example 2.3. Suppose that \mathfrak{p} is a prime ideal in a ring R. Then $S=R-\mathfrak{p}$ is a multiplicatively closed subset of R. The localisation is denoted $R_{\mathfrak{p}}$. It elements consist of all fractions r / f, where $f \notin \mathfrak{p}$. On
the other hand, suppose that $f \in R$ is not nilpotent. Then the set of powers of f,

$$
S=\left\{f^{n} \mid n \in \mathbb{N}\right\}
$$

is a multiplicatively closed subset. The localisation consists of all elements of the form r / f^{n}.

For example, take $R=\mathbb{Z}$ and $f=2$. Then $R_{f}=\mathbb{Z}[1 / 2] \subset \mathbb{Q}$ consists of all fractions whose denominator is a power of two.

Lemma 2.4. Let F be a field and let $f \in F[x]$ be a polynomial.
Then $F[x]_{f}$ is not a field.
Proof. Suppose not.
Clearly $\operatorname{deg}(f)>0$ so that $1+f \neq 0$. Therefore we may find $g \in F[x]$ such that

$$
(1+f)^{-1}=\frac{g}{f^{n}}
$$

for some n. Multiplying out, we get that $(1+f)$ divides f^{n}.
So f^{n} is congruent to 0 modulo $(1+f)$. On the other hand, f is congruent to -1 modulo $(1+f)$. The only possibility is that $1+f$ is a unit, which is clearly impossible.

Definition 2.5. Let $R \subset F$ be a subring of the field F.
We say that $c \in F$ is integral over R if and only if there is a monic polynomial

$$
m(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in R[x],
$$

such that $m(c)=0$.
If $R \subset S \subset F$ is an intermediary ring, we say that S is integral over R if every element of S is integral over R.

The integral closure of R in F is the set of all elements integral over R.

Lemma 2.6. Let $R \subset F$ be a subring of the field F.
The following are equivalent:
(1) c is integral over R,
(2) $R[c]$ is a finitely generated R-module,
(3) there is an intermediary ring $R[c] \subset C \subset F$ which is a finitely generated R-module.

Proof. Suppose that c is integral over R. Pick $m(x) \in R[x]$ monic such that $m(c)=0$. If $m(x)$ has degree d it is easy to see that $1, c, c^{2}, \ldots$, c^{d-1} generate $R[c]$ as an R-module. Thus (1) implies (2).
(2) implies (3) is clear.

Now suppose that C is a finitely generated R-module. Multiplication by c defines an R-linear map

$$
\phi: C \longrightarrow C .
$$

Pick generators $c_{1}, c_{2}, \ldots, c_{k}$ for the R-module C. Then we may find $A=\left(a_{i j}\right) \in M_{k}(R)$ such that

$$
\phi\left(c_{i}\right)=\sum a_{i j} c_{j} .
$$

Then $m(x)=\operatorname{det}(A-\lambda I) \in R[x]$ is a monic polynomial and $m(\phi)=0$, by Cayley-Hamilton. But then $m(c)=m(\phi(1))=0$. Hence (3) implies (1).

Lemma 2.7. Let $R \subset F$ be a subring of the field F.
If $S=R\left[r_{1}, r_{2}, \ldots, r_{k}\right]$ where each $r_{1}, r_{2}, \ldots, r_{k}$ is integral over S then S is integral over R.

Proof. By 2.6) it suffices to prove that S is a finitely generated R module. By induction on k we may assume that $S^{\prime}=R\left[r_{1}, r_{2}, \ldots, r_{k-1}\right]$ is a finitely generated R-module. As S is a finitely generated S^{\prime}-module (r_{k} is integral over S^{\prime} as it is integral over R) it follows that S is a finitely generated R-module.

We will need the following result later:
Lemma 2.8. Let $R \subset F$ be a subring of the field F.
The integral closure S of R in F is a ring.
Proof. Let a and b be in S. It suffices to prove that $a \pm b$ and $a b$ are in S. But $a \pm b$ and $a b$ belong to $R[a, b]$ and this is finitely generated over R by (2.7).

Lemma 2.9. Let E be a field and let R be a subring.
If E is integral over R then R is a field.
Proof. Pick $a \in R$ and let $b \in E$ be the inverse. As E is integral over R, we may find $r_{1}, r_{2}, \ldots, r_{n} \in R$ such that

$$
b^{n}+r_{1} b^{n-1}+\cdots+r_{n}=0 .
$$

Multiply both sides by a^{n-1} and solve for b to get

$$
b=-r_{1}-r_{2} a-\cdots-r_{n} a^{n-1} \in A .
$$

Lemma 2.10. Let E / F be a field extension.
If E is finitely generated as an F-algebra then E / F is algebraic.

Proof. By assumption $E=F\left[f_{1}, f_{2}, \ldots, f_{m}\right]$. We proceed by induction on m.

Let $f=f_{m}$. By induction $E=F(f)\left[f_{1}, f_{2}, \ldots, f_{m-1}\right]$ is algebraic over $F(f)$. Let $m_{i}(x) \in F(f)[x]$ be the minimal polynomial of f_{i}. Clearing denominators, we may assume that $m_{i}(x) \in F[f][x]$. Let a_{i} be the leading coefficient of $m_{i}(x)$ and let a be the product of the a_{i}. Then $\left(1 / a_{i}\right) m_{i}(x) \in F[f]_{a}[x]$ is a monic polynomial, so that f_{i} is integral over $F[f]_{a}$.

By (2.9) $F[f]_{a}$ is a field. But then f is algebraic over F by (2.4).
Theorem 2.11 (Weak Nullstellensatz). Let K be an algebraically closed field.

Then an ideal $\mathfrak{m} \triangleleft R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is maximal if and only if it has the form

$$
\mathfrak{m}_{p}=\left\langle x_{1}-a_{1}, x_{2}-a_{2}, \ldots, x_{n}-a_{n}\right\rangle,
$$

for some point $p=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in K^{n}$.
Proof. Let $\mathfrak{m} \triangleleft R$ be an ideal and let $L=R / \mathfrak{m}$. Then \mathfrak{m} is maximal if and only if $L=R / \mathfrak{m}$ is a field and $L=K$ if and only if $\mathfrak{m}=\mathfrak{m}_{p}$ for some point p.

So we may assume that L is a field and we want to prove that $L=K$. But L is a finitely generated algebra over K (generated by the images of $x_{1}, x_{2}, \ldots, x_{n}$) so that by 2.10$) L / K$ is algebraic. As K is algebraically closed, $L=K$.
Corollary 2.12 (Weak Nullstellensatz). Let K be an algebraically closed field.

If $f_{1}, f_{2}, \ldots, f_{m} \in R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a sequence of polynomials then either
(1) $f_{1}, f_{2}, \ldots, f_{m}$ have a common zero, or
(2) there are polynomials $g_{1}, g_{2}, \ldots, g_{m} \in K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ such that

$$
f_{1} g_{1}+f_{2} g_{2}+\cdots+f_{m} g_{m}=1
$$

Proof. Let $I=\left\langle f_{1}, f_{2}, \ldots, f_{m}\right\rangle \unlhd R$ be the ideal generated by the polynomials $f_{1}, f_{2}, \ldots, f_{m}$. Note that (1) holds if and only if I is contained in one of the ideals \mathfrak{m}_{p} for some $p=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in K^{n}$. Indeed, in this case $f_{1}, f_{2}, \ldots, f_{n}$ all vanish at p. On the other hand, note that (2) holds if and only if $I=R$.

So suppose that $I \neq R$. Pick a maximal ideal \mathfrak{m} containing I. By (2.11) we may find $p \in K^{n}$ such that $\mathfrak{m}=\mathfrak{m}_{p}$.

Theorem 2.13 (Strong Nullstellensatz). Let K be an algebraically closed field.

If $f_{1}, f_{2}, \ldots, f_{m}, g \in R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a sequence of polynomials then either
(1) $f_{1}, f_{2}, \ldots, f_{m}$ have a common zero, at a point where the polynomial g is not equal to zero, or
(2) there are polynomials $g_{1}, g_{2}, \ldots, g_{m} \in K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ such that

$$
f_{1} g_{1}+f_{2} g_{2}+\cdots+f_{m} g_{m}=g^{r}
$$

for some natural number r.
Proof. We use the trick of Rabinowitsch. Let

$$
S=R[y]=K\left[x_{1}, x_{2}, \ldots, x_{n}, y\right]
$$

where y is an indeterminate and consider the polynomials

$$
f_{1}, f_{2}, \ldots, f_{m}, y g-1
$$

If (1) does not hold then these equations don't have any solutions at all. By the weak Nullstellensatz (2.12 we may find polynomials $g_{1}, g_{2}, \ldots, g_{m}, h \in S$ such that

$$
f_{1} g_{1}+f_{2} g_{2}+\cdots+f_{m} g_{m}+h(y g-1)=1
$$

Let $z=1 / y$. Clearing denominators by multiplying through some large power z^{r} of z, and relabelling, we get

$$
f_{1} g_{1}+f_{2} g_{2}+\cdots+f_{m} g_{m}+h(g-z)=z^{r} .
$$

Now set $z=g$.
Corollary 2.14 (Hilbert's Nullstellensatz). Let K be an algebraically closed field and let I be an ideal.

Then $I(V(I))=\sqrt{I}$.
Proof. One inclusion is clear, $I(V(I)) \supset \sqrt{I}$.
Now suppose that $g \in I(V(I))$. Pick a basis $f_{1}, f_{2}, \ldots, f_{k}$ for I. Suppose that the point x is a common zero for $f_{1}, f_{2}, \ldots, f_{k}$, so that $f_{i}(x)=0$, for $1 \leq i \leq k$. Then $f(x)=0$ for all $f \in I$ and so $x \in V(I)$. But then $g(x)=0$. So we may apply the strong Nullstellensatz to $f_{1}, f_{2}, \ldots, f_{n}, g$ to conclude that $g^{r} \in I$, some $r>0$, that is, $g \in$ \sqrt{I}.

