
15. Products and fibre products

Definition 15.1. Let

Pm × Pn −→ Pmn+m+n,

denote the map given by

([X0, X1, . . . , Xm], [Y0, Y1, . . . , Yn]) −→ [XiYj].

This map is easily seen to be a bijection and the image is a closed
subset, defined by the quadratic polynomials

ZijZkl = ZilZkj,

(where of course Zij corresponds to XiYj). The image V is called the
Segre variety, and we define the product using this map, that is, we
are aiming for:

Proposition 15.2. Let X ⊂ Pm and Y ⊂ Pn. Then the image of
X × Y under the Segre map is the product (in the sense of category
theory) of X and Y .

Lemma 15.3. The Segre Variety V is the product, in the sense of
category theory, of Pm and Pn.

Proof. We have to exhibit two morphisms p : V −→ Pm and q : V −→
Pn and show that they satisfy the universal property. Fix l and let
Ul ⊂ V be the open subset where at least one of Zil is non-zero. Define
a map

Ul −→ Pm,
by sending [Zij] to [Zil]. This is clearly a morphism, and these maps
agree on overlaps. Moreover, varying l, the Ul cover V so that we get
a morphism on the whole of V .

By symmetry, this gives us two morphisms p and q. Moreover, under
the identification of V with Pm × Pn, it is clear that p and q are the
ordinary projection maps. Since Pm × Pn is a product in the category
of sets, given any morphisms p′ : Z −→ Pm and q′ : Z −→ Pn, there is
an induced unique function

f : Z −→ V.

It suffices to check that f is a morphism. We check this locally. Let
Uij ⊂ V be the locus where Zij 6= 0. Then Uij corresponds to Ui × Uj.
We first check that Uij is isomorphic to Am+n. By symmetry, we may
assume that i = j = 0. In this case, dehomogenising, the equations of
U = U00 become

zij = zi0z0j and zijzkl = zilzkj.
1



Define a morphism
An+m −→ U,

by the rule

(z10, z20, . . . , zm0, z01, z02, . . . z0n) −→ (zi0z0j).

This is clearly a morphism with image U and it is not hard to show
that projection on the first m + n factors is the inverse. Thus Uij '
An+m.

It is easy to check that Am+n is the product of Am and An. Thus,
by the universal property of the product, fij, the restriction of f to the
inverse image of Uij, is a morphism. �

The general case, follows by the same argument, provided we can
prove that the image of X × Y is a closed subset. In other words we
have to say something about which subsets of V are closed.

Definition 15.4. Let F (X, Y ) be a polynomial in X0, X1, . . . , Xm and
Y0, Y1, . . . , Yn. We say that F (X, Y ) is bihomogeneous of bi-degree
(d, e) if it is homogeneous of degree d in the variables X0, X1, . . . , Xm

and of degree e in the variables Y0, Y1, . . . , Yn.

For example, X0Y
2
1 +X1Y0Y1 is bihomogeneous of bi-degree (1, 2).

Note that the zero locus of a bihomogeneous polynomial is a well-
defined subset of the product.

Lemma 15.5. Let Z ⊂ V be a subset defined by bihomogeneous poly-
nomials.

Then Z is a closed subset.

Proof. Topping up the degree, we may as well assume that X is defined
by bihomogeneous polynomials F of bi-degree (d, d). It suffices then to
prove that there is a polynomial G on Pmn+m+n which pulls back to F .
By linearity, it suffices to prove this for monomials. But Zij pulls back
to XiYj, and we can clearly build any monomial XIY J , as a product of
such monomials, provided that XI and Y J have the same degree. �

Proof of (15.2). By (15.5) the image of X×Y is a closed subset of the
Segre variety, under the Segre map, and the rest of the the proof goes
through as before. �

It is interesting to see what happens in a specific example. Suppose
we take the twisted cubic in P3. This lies in the quadric XW = Y Z,
that is, it lies in the Segre variety. Now it also lies in the quadric
Y 2−XZ. Pulling back to P1×P1 we get the bihomogeneous polynomial

(X0Y1)
2 − (X0Y0)(X1Y0) = X0(X0Y

2
1 −X1Y

2
0 ).
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Now the equation X0 = 0 corresponds to a line in the quadric (see
below), and what is left defines the twisted cubic. Thus the twisted
cubic is defined by a bi-homogeneous polynomial of type (1, 2).

It is also interesting to see what happens to {p} × P1 and P1 × {q}.
Indeed [λ0 : λ1] × [Y0 : Y1] is sent to [λ0Y0 : λ0Y1 : λ1Y0 : λ1Y1], which
is the parametric form of a line. In fact the equations of the line are
λ1X = λ0Z and λ1Y = λ0W .

Similarly [X0 : X1]× [µ0 : µ1] is sent to the line [µ0X0 : µ1X0 : µ0X1 :
µ1X1]. This line has equations µ1X = µ0Y and µ1Z = µ0W .

It follows that the Segre variety P1 × P1 ⊂ P3 is covered by two
1-parameter families of lines.

There is in fact another way to look at all of this. Let V and W be
two vector spaces of dimension two. Consider the natural map

V ×W −→ V ⊗W.
This induces a map

P1 × P1 −→ P3.

Let us calculate what this map is in terms of coordinates. A general
vector v ∈ V has the form v = ae + bf , where {e, f} is a basis of V .
Similarly a general vector w ∈ W is of the form cg + dh, where {g, h}
is a basis of W . Thus the pair (v, w) is sent to

v ⊗ w = (ae+ bf)⊗ (cg + dh)

= ac(e⊗ g) + ad(e⊗ h) + bc(f ⊗ g) + bd(f ⊗ h).

The induced map is then

([v], [w]) −→ [ac(e⊗ g) + ad(e⊗ h) + bc(f ⊗ g) + bd(f ⊗ h)]

([a : b], [c : d]) −→ [v ⊗ w] = [ac : ad : bc : bd],

which is clearly the Segre map. Thus the Segre variety consists of all
tensors of rank one. The two families of lines, are given as [v]×P1 and
P1 × [w].

Clearly this generalises in an obvious way to the general Segre variety,
which is covered by two families of linear spaces. A family of linear
spaces of dimension m, parametrised by Pn and a family of linear spaces
of dimension n, parametrised by Pm.

This also sheds some light on the fact that the twisted cubic is not
the intersection of two quadrics. First a quick digression on quadrics,
the zero locus of a quadratic polynomial. A quadratic polynomial in
the variables X0, X1, . . . , Xn is the same as an element of Sym2(V ∗).
These can be identified with symmetric bilinear forms. As such any
quadratic polynomial (whence a quadric) has a rank. Since the only
invariant of a symmetric bilinear form over an algebraically closed field
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is its rank, quadrics are classified up to projective equivalence by their
rank.

It is interesting to see how this works in practice. If Q ⊂ Pn is a
quadric of rank r ≤ n + 1 then we can always choose coordinates so
that Q is given as

X2
0 +X2

1 + · · ·+X2
r−1 = 0.

(Actually not quite; in characteristic two one must look at X0X1 +
X1X2+. . . with a square at the end depending on the parity of r). Now
if any variety X is defined by homogeneous polynomials which don’t
involve the last variable then X contains the point q = [0 : 0 : · · · : 1].
In fact if p ∈ X then the line 〈p, q〉 is contained in X. More generally,
if the equations defining X don’t involve the last n− r variables, then
X contains the linear space Λ given by X0 = X1 = . . . Xr−1 = 0 and if
p ∈ X then so is the linear space 〈p,Λ〉. In this case we say that X is a
cone over Λ and we call Λ the vertex. Note that to specify X, look at
the variety Y you get by considering the zero locus of the polynomials
in Pr−1 and then joining every point of Y to every point of Λ.

Back to quadrics. In P1 there are two possibilities. If the rank is 1
then we must have X2 and we get one point. If the rank is 2 we get
X2 +Y 2 (or XY in characteristic two) and we get two points. So there
are three possibilities for a conic in P2. If the rank is at most two, we
get the cone over one or two points, that is a line (counted twice, as it
were) or a pair of lines. Otherwise we get a smooth conic. In P3 there
are four possibilties. A double plane, a pair of planes, a cone (in the
classic sense) or the Segre variety.

Back to twisted cubics. If one of the quadrics has maximal rank 4 (or
better one of the quadrics in the pencil, which is in fact always true),
then it is projectively equivalent to the Segre variety. In this case the
other quadric cuts out a curve of bi-degree (2, 2) on P1 × P1. As the
twisted cubic has bi-degree (1, 2), it follows that we get not only the
twisted cubic, but a line (something of bi-degree (1, 0)), so that the
union has bi-degree (2, 2). Now the line is a fibre of one of the rulings,
and a general fibre meets the cubic in two points (since a quadratic
polynomial has two roots in general).

In fact projecting a curve C of bi-degree (d, e) to either factor defines
a morphism C −→ P1 which has degree d (respectively e), that is, the
typical fibre contains d points (at least in characteristic zero).

Theorem 15.6. Let φ : X −→ B and ψ : Y −→ B be two morphisms
of quasi-projective varieties.

4



Then the set

I = { (x, y, b) ∈ X × Y | b = φ(x) = ψ(y) } ⊂ X × Y ×B,

is the fibre product of φ and ψ in the category of varieties.

Proof. We have already seen that the two projection maps p : X ×
Y × B −→ X and q : X × Y × B −→ Y are morphisms. Suppose
we are given two morphisms f : Z −→ X and g : Z −→ Y such that
φ ◦ f = ψ ◦ g. By composition we get two morphisms to B and by
the universal property of the products X × B and Y × B, we get two
morphisms f ′ : Z −→ X × B and g′ : Z −→ Y × B. By the universal
property of the product X×B×Y ×B, there is an induced morphism
Z −→ X × Y × B × B. Note that under projection to the last two
factors, the image always lies in the diagonal

{ (b, b) | b ∈ B },

which is easily to be a copy of B. So we get a morphism Z −→
X × Y ×B. By the universal property of the fibre product, the image
lands in I.

So the only thing to check is that I is a quasi-projective variety. �

Definition-Lemma 15.7. Let φ : X −→ B be a morphism of quasi-
projective varieties. The graph of φ is the closed set

Γφ = { (x, b) |φ(x) = b } ⊂ X ×B.

It is isomorphic to X via the first projection map.

Proof. The only things to check are that Γφ is closed and the first
projection map is an isomorphism. Since we can check this locally,
we may assume that X and B are affine. We may then assume that
B = An and that φ is given as

(x1, x2, . . . , xm) −→ (f1/g, f2/g, ..., fn/g),

where g does not vanish on X. In this case the graph is given by the
equations

gyi = fi,

where y1, y2, . . . , yn are coordinates on An. To see that the first map is
an isomorphism, one can use the fact that the graph is in fact the fibre
product of the identity X −→ X and the morphism φ : X −→ B over
B. The inverse map of the first projection is

(x1, x2, . . . , xm) −→ (x1, x2, . . . , xm, f1/g, f2/g, ..., fn/g). �

Lemma 15.8. I ⊂ X × Y ×B is closed.
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Proof. This is easy. The graphs of φ and ψ define two closed subsets
of X × Y ×B,

{ (x, y, b) |φ(x) = b } and { (x, y, b) |ψ(y) = b },
and I is the intersection. �
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