
14. Limits

One of the more interesting notions of category theory, is the theory
of limits.

Definition 14.1. Let I be a category and let F : I −→ C be a func-
tor. A prelimit for F is an object L of C, together with morphisms
fI : L −→ F (I), for every object I of I, which are compatible in the fol-
lowing sense: Given a morphism f : I −→ J in I, the following diagram
commutes

L
fI- F (I)

F (J).

F (f)

?fJ -

The limit of F , denoted L = lim
←
I
F is a prelimit L, which is uni-

versal amongst all prelimits in the following sense: Given any prelimit
L′ there is a unique morphism g : L′ −→ L, such that for every object
I in I, the following diagram commutes

L′ g - L

F (I).

fI
?f ′I

-

Informally, then, if we think of a prelimit as being to the left of every
object F (I), then the limit is the furthest prelimit to the right. Note
that limits, if they exist at all, are unique, up to unique isomorphism,
by the standard argument. Note also that there is a dual notion, the
notion of colimits. In this case, F is a contravariant functor and all the
arrows go the other way (informally, then, a prelimit is to the right of
every object F (I) and a limit is any prelimit which is furthest to the
left).

Let us look at some special cases. First suppose we take for I the
category with one object and one morphism. In this case a functor
picks out an object. It is clear that in this case the limit is the same
object. Similarly for the colimit.

It is in fact more interesting to take for I the empty category, that is
the category with no objects and no morphisms. Then every object is a
prelimit and so a limit has the property that every object has a unique
map to it. For obvious reasons this is called a terminal object. The
category (Sets) of sets has as terminal object any set with one object;
the category (Vec) of vector spaces any space of dimension zero. The
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colimit has the property that it has a unique map to every object and
it is called an initial object. The empty set is an initial object of the
category (Sets) of sets; the group with one element is an initial object
in the category (Groups) of groups.

At the other extreme one can take the identity functor, so that I = C.
A limit, if it exists at all, is an object to which all other objects map
(in a compatible fashion). In the case that a category has an initial
object, then the limit of the identity functor is the initial object. Dually,
a colimit, if it exists at all, is an object which maps to all other objects.
In the case that a category has a terminal object, then the colimit of
the identity functor is the terminal object.

Now take as category two objects, with two morphisms (that is, the
two identity maps). A functor picks out two objects, call them X and
Y . First consider the case of the limit. A prelimit is the data of an
object Z, together with a pair or morphisms, f : Z −→ X and g : Z −→
Y . This prelimit is a limit if and only if it is universal amongst all such
prelimits. That is, suppose we are given two morphisms f ′ : Z ′ −→ X
and g′ : Z ′ −→ Y , then there is a unique induced morphism h : Z ′ −→
Z, such that the following diagram commutes

X

Z ′ -

f ′
-

Z

f

-

Y.

g

-g′ -

Dually, consider the case of a colimit, where all the arrows are re-
versed. A prelimit is the data of an object Z, together with a pair of
morphisms, f : X −→ Z and g : Y −→ Z. This prelimit is a limit if and
only if it is universal amongst all such prelimits. That is, suppose we
are given two morphisms f ′ : X −→ Z ′ and g′ : Y −→ Z ′, then there
is a unique induced morphism h : Z −→ Z ′, such that the following
diagram commutes

X

Z -

f -

Z ′.

f ′

-

Y

g′

-
g

-
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Definition 14.2. Let X and Y be two objects of a category C. The
product is the limit and the coproduct is the colimit, of the functor
above.

The product of two sets is the ordinary cartesian product; the prod-
uct of two topological spaces is the product of the spaces and so on. The
coproduct of two sets is their disjoint union; similarly for topological
spaces; the coproduct of two vector spaces is the direct sum; similarly
for groups and rings. Note that for groups, rings and vector spaces,
the coincidence that the product and coproduct are in fact isomorphic,
even though they satisfy two quite different universal properties.

Now let us be a little more ambitious. Take a category with three
objects and five morphisms. The two non-trivial morphisms should
have the same target, but different domains.

Definition 14.3. Suppose we are given a diagram

Y

X
f- B.

g

?

The limit of the corresponding functor, denoted X×
B
Y , is known as the

fibre product or fibre square.

As with the definition of the product, there is an accompanying
commutative diagram

Z ′

Z -

-

Y
-

X
?

f-

-

B.

g

?

Note that if B is a terminal object, then the fibre product is nothing
more than the product.

Lemma 14.4. The category (Sets) of sets admits fibre products.

Proof. It is easy to check that

X ×
B
Y = { (x, y) ∈ X × Y | f(x) = g(y) },

does the trick. �
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The fibre product is sometimes also known as the pullback. In other
words we think of the morphism

X ×
B
Y −→ X,

as the pullback of the map g : Y −→ B along the map f : X −→ B. In
particular the fibre of the former map over the point x ∈ X is equal to
the fibre of the map g over the point f(x).

The dual notion is that of pushout. Basically take the diagram above,
flip about the Y −X-diagonal and reverse the arrows. Thus if we start
with the diagram

B
g - Y,

X

f

?

the pushout Z enjoys the universal property encoded in the following
commutative diagram:

B
g - Y

X

f

?
- Z

?

Z ′.

--
-

For example, consider the category of rings. Suppose we are given
two ring homomorphisms A −→ B and A −→ C, and two ring ho-
momorphisms B −→ P and C −→ P . Then we get a bilinear map
B×C −→ P , using multiplication in P . It is then easy to see that the
pushout is the tensor product B ⊗

A
C.
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