
13. Morphisms between varieties II

Consider the following very classical problem.
Determine all triples of integers a, b and c such that a2 + b2 = c2.
One way to solve this problem is to use some geometry. Consider

the circle with equation x2 + y2 = 1. Pick a point of this conic, say
(0, 1) in the ordinary plane. Consider picking a line l passing through
p. This line will intersect the circle at one further point, say q. Let us
find the coordinates of q.

Now the general line through (0, 1) is of the form

y − 1 = −tx,
for some t ∈ K, at least if the line is not vertical. Substituting into

x2 + y2 = 1,

we get

x2 + (−tx+ 1)2 = 1,

so that

(t2 + 1)x2 − 2tx = 0.

Thus either x = 0, the solution we already have, or

(t2 + 1)x− 2t = 0,

so that

x =
2t

t2 + 1
.

In this case

y = −tx+ 1 =
1− t2

t2 + 1
.

In this way, we get a morphism

f : A1 − {±i} −→ A2,

where

t −→
(

2t

t2 + 1
,
1− t2

t2 + 1

)
Note that we can reverse this process. That is, we can start with a

point (x, y) of C and obtain a point of the x-axis, simply by projection.
In fact this map is defined for any point away from the line y = 1. If
we have a point (x, y) then we send this to a point z, where the three
points (0, 1), (x, y) and (z, 0) are collinear. Now the reciprocal of the
slope of the line connecting (0, 1) to (z, 0) is −z, so that

x

y − 1
= −z.
1



Thus the map is

A2 − {y = 1} −→ A1,

(x, y) −→ x

1− y
.

When we restrict to C we get a morphism outside of (0, 1). What
happens when we projectivise?

In this case, x = X/Z, y = Y/Z and, at least symbolically we get

[X : Y : Z] −→ [1 :
X/Z

1− Y/Z
] = [1 :

X

Z − Y
].

Now note that, at least outside the locus Z = Y ,

[1 :
X

Z − Y
] = [Z − Y : X].

So that it makes sense to extend the map by the rule

[X : Y : Z] −→ [Z − Y : X].

This gives us a well-defined map, except on the locus Z = Y , X =
0, that is the point [0 : 1 : 1]. The key point to observe is that
even though there is no way to extend this morphism, which is defined
on P2 − [0 : 1 : 1], to the whole of P2 (geometrically this is clear,
since we would somehow be picking out one line from amongst all
lines through [0 : 1 : 1], and the natural symmetry says we cannot do
this), in fact it does make sense to extend this map to the whole of
C = V (X2 + Y 2 − Z2). Again geometrically this is clear. In the limit
as y tends to one, the line tends to a horizontal line, a line of zero slope.
In fact this is equally clear algebraically. On the curve X2 + Y 2 = Z2,
so that

(Z − Y )(Z + Y ) = X2.

Given this, on the locus where Z + Y 6= 0 and X 6= 0,

[Z − Y : X] = [(Z + Y )(Z − Y ) : (Z + Y )X]

= [X2 : (Y + Z)X]

= [X : Y + Z].

Thus we could have defined the morphism equally well by using
[X : Y + Z]. Note this gives us what we expect geometrically; the
point [0 : 1 : 1] would be sent to the point [0 : 2] = [0 : 1], using the
last prescription.

In other words, a priori, the map

C − {[0 : 1 : 1]} −→ P2,
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given as
[X : Y : Z] −→ [Z − Y : X],

would not seem to extend to [0 : 1 : 1]. In fact, using our working
definition, it does not. The point is, then, that our working definition
is not quite right. Let us think carefully through how we want to
change our definition, so as to add this map as a morphism. We are
given X ⊂ Pn and a morphism defined on two “large” subsets of X, a
la working definition. That is we are given U ⊂ X, and F0, F1, . . . , Fm
without common zeroes on U , similarly V ⊂ X, with G0, G1, . . . , Gm

without common zeroes on V . On the intersection, we have

[F0 : F1 : · · · : Fm] = [G0 : G1 : · · · : Gm]

so that they represent the same function on the intersection U ∩ V .
We would then like to extend the morphism to the whole of U ∪ V ,
definining the map piecewise.

Definition 13.1. A quasi-projective variety is a locally closed sub-
set of Pn.

Example 13.2. Every affine variety V ⊂ An is a quasi-projective
variety. Indeed V is closed subset of An so that it is the intersection
of the closure W of V with the open set U0 ' An. Similarly, every
quasi-affine variety is a quasi-projective variety.

Conversely, note that if V ⊂ Pn is a quasi-projective variety then
Vi = V ∩ Ui ⊂ Ui ' An is a quasi-affine variety.

Definition 13.3. Let
f : V −→ W,

be a map between two quasi-projective varieties V ⊂ Pm and W ⊂ Pn.
Let Vα and Wi be the quasi-affine covers defined above and let

Uα,i = f−1(Wi) ∩ Vα.
We say that f is a morphism, if the resriction

f |Wi,α
: Wα,i −→ Ui

is a morphism of quasi-affine varieties.

Note that the coordinates of f |Wi,α
are regular functions on a quasi-

affine variety.
This gives us a category, the category of quasi-projective varieties

and morphisms.
We now relate this definition, to our previous working definition. For

example, suppose we are given a map between projective varieties

f : X −→ Y,
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X ⊂ Pm and Y ⊂ Pn, which is given by a collection of homogeneous
polynomials F0, F1, . . . , Fn of the same degree d, which don’t vanish
simultaneously,

[X0 : X1 : · · · : Xm] −→ [F0 : F1 : · · · : Fn].

On the open subsets Xα 6= 0 and Yi 6= 0 this reduces to the map

(x0, x1, . . . , x̂α, . . . , xn) −→ (f0, f1, . . . , f̂i, . . . , fn),

where

xj =
Xj

Xα

and fj =
Yj
Yi
.

We note one very curious

Proposition 13.4. Let X ⊂ Pn be a projective variety.
Then we may find an embedding of X into some PN such that X

is defined by linear polynomials and quadratic polynomials of rank at
most 4.

Lemma 13.5. The d-uple embedding

Pn −→ PN ,

is an isomorphism and a homeomorphism with its image Y , which is a
closed subset of PN with equations

ZIZJ = ZI′ZJ ′ for all labels I + J = I ′ + J ′

Proof. The d-uple embedding is certainly a morphism. We already
showed that Y ⊂ PN is closed. One can check that Y is cut out by the
given equations.

We now try to write down the inverse map. The image Y is contained
in the open affine cover Vi = VI , where I ranges over the pure powers,
I = (0, 0, . . . , 0, d, 0, . . . 0) (that is, XI = Xd

i ). The inverse image is
then the open affine Ui, Xi 6= 0, and we get morphisms

fi : Ui −→ Vi.

We write down do the inverse image in the case of f0, so that we want
to define a map g0 : V0 −→ U0 a morphism, which will turn out to be
the inverse of f0. In this case, we send

[ZI ] −→ [Z(d,0,0,...,0) : Z(d−1,1,0,...,0) : Z(d−1,0,1,...,0) : · · · : Z(d−1,0,0,...,1)].

This map is certainly a morphism. Moreover it is not hard to see that
it is the inverse of f0. By symmetry this gives us maps gi, inverses
of fi. Since the inverse map g = f−1 is unique, provided it exists,
compatibility on overlaps is guaranteed. �
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Lemma 13.6. Let X be a projective variety and let F be a homoge-
neous polynomial of degree d. Then the set

UF = {x ∈ X |F (x) 6= 0 },
is an open affine subset of X.

Proof. Let Y be the image in PN of X under the d-uple embedding.
By (13.5) Y is isomorphic to X. Suppose that

F (X) =
∑
I

aIX
I .

Then F = 0 corresponds to the locus

L =
∑

aIZI = 0,

which is a hyperplane in PN . Since the complement of any hyperplane is
a copy of affine space (just change coordinates so that the hyperplane
is given as ZN = 0) the corresponding subset of Y , UL, is an affine
subset. As UL is isomorphic to UF , the result follows. �

Proof of (13.4). Suppose thatX is defined by F1, F2, . . . , Fk. Note that
we may assume that F1, F2, . . . , Fk all have the same degree. Indeed the
vanishing locus of X0, X1, . . . , Xn is empty so that the vanishing locus
of F and X0F , X1F , . . . , XnF coincide. So just top up the degrees
until they are all the same.

Now consider the d-uple embedding νd. The image of X inside νd(Pn)
is defined by a collection of linear polynomials; if Fi =

∑
aIX

I then we
need the linear polynomial

∑
aIZI . But we already know that νd(Pn)

is defined by quadratic polynomials of the form ZIZJ = ZI′ZJ ′ , which
has rank at most four. �
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