
12. Change of coordinates

Definition 12.1. PGLn(K) denotes the space of invertible n×n matri-
ces with entries in K, modulo the normal subgroup of scalar matrices,
that is

PGLn(K) =
GLn(K)

K∗
.

Note that the canonical action of GLn+1(K) on Kn+1 descends to an
action of GLn+1(K) on Pn, in an obvious way. Clearly the set of scalar
matrices acts trivially and in fact it is not hard to see that the scalar
matrices are the kernel of the induced homomorphism. On the other
hand, it is also easy to see that if we fix a matrix A, then the induced
bijection

Pn −→ Pn

is in fact a morphism. Thus the group PGLn(K) is a subgroup of the
group of all automorphisms of Pn.

It is interesting to see what happens for P1. Suppose we take a
matrix

A =

(
a b
c d

)
.

Then A sends [X : Y ] to

[aX + bY : cX + dY ].

Suppose we work in the affine chart z = X/Y . Then A sends z to

aX + bY

cX + dY
=
a(X/Y ) + b

c(X/Y ) + d

=
az + b

cz + d
.

In the case when K = C, we recover the Möbius group, the group of
Möbius transformations.

Perhaps the most interesting property of PGLn(K) is the following:

Theorem 12.2. Let p1, p2, . . . , pn+2 and q1, q2, . . . , qn+2 be two sets of
n+ 2 in Pn in linear general position.

Then there is a unique element of φ ∈ PGLn(K) such that

φ(pi) = qi.

Using this, in the case n = 1, we can give a synthetic construction
of the unique conic through five points p1, p2, p3, p4 and p5 in linear
general position, which is known as the Steiner construction. Fix two
points p = p1 and q = p2. Consider the set of lines through p.
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Definition 12.3. Suppose that Pn = P(V ). Then P̂n = P(V ∗) is called
the dual projective space.

The whole point of P̂n is that it parametrises hyperplanes in Pn.
Indeed an element of V ∗ is a linear functional on V . Its zero locus
is a hyperplane in V and this defines a hyperplane in Pn. Conversely
a hyperplane in Pn corresponds to a hyperplane in V . This defines a
linear functional on V , up to scalars, that is, an element of P(V ∗).

Another way of putting this is as follows. Pick coordinatesX0, X1, . . . , Xn

on V . These form a basis of V ∗. A general element of V ∗ is then of
the form

a0X0 + a1X1 + · · ·+ anXn,

and its zero locus is a hyperplane in Pn.

Lemma 12.4. Let Λ ⊂ Pn be a linear subspace of Pn of dimension k.
Then the set of linear spaces Γ of dimension k + 1 (or of dimension

n−1) containing Λ is a copy of projective space of dimension n−k−1.

Proof. We will give three different proofs of this result and we will also
show that these two cases are duals of each other.

The first is geometric. Pick Λ′ a complimentary linear subspace
(that is, Λ′ has the property that it is disjoint from Λ and of maximal
dimension with this property). Then Λ′ is of dimension n − k − 1, so
that it is a copy of projective space of dimension n− k − 1.

Claim 12.5. The points of Λ′ are in bijection with linear spaces of
dimension k + 1 containing Λ.

Proof of (12.5). One direction is clear. Given a point of Λ′ the span of
this point and Λ is a linear space of dimension k + 1 containing Λ.

On the other hand, a linear space Γ of dimension k+ 1 containing Λ
must meet Λ′ in a unique point. Indeed the dimension of the intersec-
tion of Γ and Λ′ is at least zero. On the other hand, if it were positive
dimensional, then there would be a line l in the intersection. This line
is contained in Γ and Λ is a hyperplane in Γ, so that l and Λ must meet
in a point. But this contradicts the fact that Λ and Λ′ are disjoint. �

The second is algebraic. Pick coordinates so that Λ is given as Zk+1 =
. . . Zn = 0. Then a hyperplane containing Λ is given by an equation of
the form

ak+1Zk+1 + · · ·+ anZn = 0.

Thus the set of hyperplanes containing Λ is naturally in bijection with
Pn−k−1, with coordinates [ak+1 : ak+2 : · · · : an].

The third uses a little linear algebra. Suppose that Pn = P(V ).
Then V has dimension n+ 1 and Λ = P(W ), where W is of dimension
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k + 1. Suppose that Γ = P(U). Then the set of U containing W
is in bijection with the set of U ′ of dimension one in V/W . But the
latter is by definition P(V/W ) and as V/W has dimension n − k, the
result follows. By duality, hyperplanes in P(V/W ) correspond to lines
in P(V ∗/W ∗) and so the two results are indeed dual. �

Thus the set of lines Hp through p is naturally a copy of P1. Similarly
for the set Hq of lines through q. Choose parametrisations Lt and Mt

of these set of lines. Formally we pick isomorphisms P1 −→ Hp and
P1 −→ Hq. The two lines Lt and Mt intersect in a point pt. Varying
t, the locus of points pt sweeps out a curve, call it C. First note that
C contains p and q, provided that the line 〈p, q〉 does not correspond
to the same parameter value (we will check later that our choice of
parametrisations satisfies this condition).

Note that we have three degrees of freedom left. Indeed we may
choose our parametrisation of Hp so that t = 0 corresponds to the line
〈p, p3〉, t = 1 to 〈p, p4〉 and t =∞ to 〈p, p5〉, using (12.2). Similarly for
Hq. It follows then that Ct passes through p3, p4 and p5.

It remains to check that C is a conic. There are two ways to see this.
The first is by direct computation. If Lt is given by aX + bY + cZ and
Mt is given by dX + eY + fZ then the point of intersection of Lt and
Mt may be determined as follows. Let A be a square n×n matrix and
let B be the adjugate matrix (the tranpose of the matrix of n−1×n−1
minors). Then

AB = BA = (detA)In.

Now let

A =

a b c
d e f
0 0 0

 .

Then detA = 0 and computing BA we see that the last column of B
gives the intersection point of Lt and Mt. So this point has coordinates
which are quadratic in a-f . These are in turn linear in S and T , so we
get three quadratic polynomials F , G and H. C is then the image of
the morphism

P1 −→ P2,

given by

[S : T ] −→ [F : G : H].

It is now easy to see that C is a conic:

Lemma 12.6. Let C ⊂ Pd be the image of a morphism

[S : T ] −→ [F0 : F1 : · · · : Fd],
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where F0, F1, . . . , Fd have degree at most d.
If C is not contained in a hyperplane then C is projectively equivalent

to a rational normal curve of degree d.

Proof. Note that C is not contained in a hyperplane if and only if
F0, F1, . . . , Fd are linearly independent. Since the space of homogeneous
polynomials of degree d in S and T has dimension d + 1, it follows
that the polynomials F0, F1, . . . , Fd are a basis for the homogeneous
polynomials of degree d. But then we may find a linear transformation
taking SiT d−i to Fi, that is an element of GL(d), and this defines a
projective equivalence with the rational normal curve of degree d. �

Note that in our case if C were to lie in a hyperplane then it would
be a line, which is not the case, since C contains p1, p2, p3, p4 and p5
and any three of these points are not collinear.

Actually there is another way to check that F , G and H have degree
2. The basic idea is that to find the degree of a curve C, just intersect
with a typical line L. The number of points |C ∩ L| will just be the
degree of the curve. In fact if the line is given by aX + bY + cZ then
we just need to find the solutions to the equation

aF + bG+ cH = 0.

If F , G and H have degree d then this equation ought to have d so-
lutions. Borrowing a result from later in the course, in fact we can
always choose L with the property that |L ∩C| = d (this is equivalent
to saying that not every line is a tangent line).

So pick a typical line L (in particular a line that does not contain
any of p1, p2, p3, p4 and p5). We calculate |C ∩ L|.

Since the set L is in (non-canonical) bijection with Hp and Hq, a
moments thought will convince the reader that picking L determines
an automorphism φ ∈ PGL(2) (indeed send Lt ∩ L to Mt ∩ L) and we
want to calculate the number of fixed points of φ .

Lemma 12.7. Let φ ∈ PGL(2).
Then φ is conjugate to

(1) The identity,
(2) z −→ az, some a ∈ K∗,
(3) z −→ z + 1.

Moreover the three cases are determined by the number of fixed points;
at least three; two, one.

Thus the degree d of F , G and H is at most 2. If d = 1 then C is a
line, a contradiction. Thus d = 2 and C is a conic.
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Now suppose that the line 〈p, q〉 corresponds to the same parameter
value. In this case d ≤ 1 since one of the fixed points of φ corresponds
to L∩〈p, q〉, a contradiction. Another way to proceed, which generalises
better to higher dimensions, is to consider the line H = 〈p3, p4〉. We get
an automorphism of this line, by sending the point Lt ∩H to Mt ∩H.
This automorphism would have three fixed points, p3, p4 and H∩〈p, q〉.
But then this automorphism would be the identity. This can only
happen if C = H and so p5 would also lie on H, a contradiction.

This result has the following interesting generalisation:

Theorem 12.8. Let p1, p2, . . . , pn+3 be n + 3 points in linear general
position in Pn.

Then there is a unique rational normal curve through these points.

Proof. We will do the case of n = 3 (the general case is no harder, just
notationally more involved). Let l be the line 〈p1, p2〉, m be the line
〈p2, p3〉 and n the line 〈p1, p3〉. The set of planes that contains l, Hl, is
a copy of P1. Pick three parametrisations of the three copies of P1, Hl,
Hm and Hn. We choose these parametrisations subject to the condition
that the plane spanned by p1, p2 and p3 corresponds to three different
parameter values. Given t ∈ P1, the three planes corresponding to t
intersect in a point, and so we get a curve C in P3.

Once again we have three degrees of freedom. We may choose our
parametrisations, so that t = 0 corresponds to the three planes 〈l, p4〉,
〈m, p4〉 and 〈n, p4〉. In this way, we may pick C so that it contains the
six points p1, p2, . . . , p6 (we check our non-degenerary condition at the
end).

It remains to check that C is a twisted cubic. As before we could
use the adjugate matrix to conclude that C is the image of

[S : T ] −→ [F : G : H : I],

where F , G, H and I all have degree three and then we just apply
(12.6).

Instead, we could also the geometric argument. As before, it suffices
to check that C meets a general plane P in three points. We use the
same argument. The planes Pt and Qt intersect P in a single point
x. Similarly the planes Qt and Rt intersect P in a single point y. H
intersects C at the point corresponding to t iff x = y. The assignment
x −→ y is an automorphism of P , a copy of P2, and any automorphism
of P2, not equal to the identity, can have at most three fixed points.

Now suppose that Pt0 = Qt0 (necessarily 〈p1, p2, p3〉), for some t0.
Consider the line L = 〈p4, p5〉. The automorphism given by sending
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Pt∩L to Qt∩L would have three fixed points, p3, p4 and L∩〈p1, p2, p3〉.
But then p6 must also lie on L, a contradiction. �
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