
10. Conics in P2

We want to talk about curves in P2. For that we need to look at poly-
nomials. The problem is that polynomials in X, Y and Z don’t define
functions on P2, since polynomials are not invariant under rescaling.
However, we don’t really care what the value of the polynomial is, all
we care about is whether or not the polynomial is zero.

Definition 10.1. Let F (X) ∈ K[X] be a polynomial in the variables
X0, X1, . . . , Xn. We say that F is homogeneous if every non-zero
term of F has the same degree d.

Lemma 10.2. Let F (X) ∈ K[X].

(1) If F is homogeneous of degree d, then F (λX) = λdF (X), for
all λ ∈ K (we adopt the convention here that 00 = 1).

(2) Conversely, if F (λX) = λdF (X), for all λ ∈ K and K is
infinite then F is homogeneous of degree d.

Proof. (1) is clear. Suppose now that F is any polynomial. Then
F =

∑
i Fi has a unique decomposition, where Fi is homogeneous of

degree i. If F (λX) = λdF (X), then this forces λiFi(X) = λdFi(X),
for every i. If K is infinite then for every i 6= d, we can pick λ, so that
λi 6= λd. Thus Fi(X) = 0, for all i 6= d. �

Definition-Lemma 10.3. Let S be a set of homogeneous polynomials.
The zero set X = V (S) is called a projective subvariety of Pn.

The Zariski topology on Pn is the topology whose closed subsets
are the projective subvarieties.

Lemma 10.4. Λ ⊂ Pn is a linear subspace if and only if it is defined
by a collection of homogeneous linear equations.

In particular every linear subspace of Pn is a projective subvariety.

Proof. Clear, since a subset W ⊂ V is a linear subspace if and only if
it is defined by homogeneous linear equations. �

One of the key points, is that we can go backwards and forwards
between affine and projective varieties.

First let us suppose that we are given a subset V ⊂ Pn. Clearly we
can form V ⊂ U0 simply by intersecting V with U0. Suppose that V is
a closed subvariety, say defined by Fα(X) homogenous. Define fα(x)
by replacing Xi by Xi/X0. It is pretty easy to see that V0 is defined
by the fα.

Conversely suppose we are given fα, which defines V ⊂ An. Then
we can form Fα(X) homogeneous, simply by topping up each term of
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fα, by the appropriate power of X0. This defines V̄ in X. Again, it is
not hard to see that V̄ ∩ U0 = V .

In both cases, the best way to see what is going on, is to look at
some examples.

Example 10.5. Suppose we consider x2 + y2 = 1 inside A2. We
may think of this as U2 ⊂ P3, with coordinates X, Y and Z. Replace
x2+y2 = 1 by x2+y2−1. This has degree two. The first two terms have
degree two, and there is nothing to do (apart from replacing lower caps
by upper). The last term has degree zero. To make this homogeneous
then, we need to multiply by Z2. We get X2 + Y 2 − Z2. Now suppose
we want to work on U0. Then we divide through by X2 and replace
Y/X by y and Z/X by z, to get 1 + y2 − z2. Note the quick way to do
this is simply to replace X by 1 and replace upper caps by lower.

Example 10.6. Consider y = x3. We get y−x3. Consider this inside
P2, with coordinates X, Y and Z. We get Y Z2−X3. Now work inside
U1. We get z2 − x3.

It is interesting to see what happens to parallel lines in A2.

Example 10.7. Let L be the line y = 0 and let Mt be the line y =
tx + 1, where t ∈ K. Then L becomes the line Y = 0 and Mt the line
Y = tX +Z. When t = 0, we get Y = Z. Thus Z = 0, and we get the
point [1 : 0 : 0]. Thus our two parallel lines intersect along the line at
infinity, at the point [1 : 0 : 0], corresponding to the fact that both lines
are horizontal.

In fact it is interesting to consider the family in the coordinate patch
Y 6= 0. We get x = 0 and x = t + z, which is equivalent to x = 0 and
z = −t.

Note that these processes are not quite inverse.

Example 10.8. Suppose we start with X = 0 inside P2. If we go to
the coordinate patch U0 then we get the empty set. Going back to P2,
we get the empty set. The whole point is that the whole of X = 0
completely avoids the set U0.

One of the beautiful results of classical projective geometry is the
following:

Lemma 10.9. Let f ∈ R[x, y] be a polynomial of degree two. Suppose
that f = 0 contains more than one real point. Let F be the homogeni-
sation of f .

Then f = 0 is a circle if and only if F = 0 contains the points
[1 : ±i : 0].
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Proof. Suppose that f = 0 defines a circle. Then f(x, y) has the form

(x− a)2 + (y − b)2 = r2.

Thus F is equal to

(X − aZ)2 + (Y − bZ)2 = r2Z2.

Set Z = 0. Then X2 + Y 2 = 0, which has the solution [1 : ±i : 0].
Conversely suppose that F = 0 contains the points [1 : ±i : 0]. Then

F (X, Y, 0) = aX2 + bXY + cY 2,

vanishes at [1 : ±i : 0]. Thus

ax2 + bx+ c = 0,

has roots±i, which is only possible if b = 0 and a = c. Hence F (X, Y, 0)
is a non-zero multiple of X2 + Y 2. Possibly rescaling, we may assume
that

F (X, Y, Z) = X2 + Y 2 + ZG(X, Y, Z)

where G(X, Y, Z) is a linear polynomial. Thus

f(x, y) = x2 + y2 + g(x, y),

for some linear polynomial g. Completing the square, we can put this
in the form

(x− a)2 + (y − b)2 = k.

The condition that f = 0 contains more than one point is equivalent
to requiring that k > 0, so that k = r2, some r > 0 and we have the
equation of a circle. �

Since we want to work over C, it turns out that we want to reinvent
the wheel:

Definition 10.10. The curve C ⊂ P2
C, given as F = 0, is a circle if

F has degree two and C contains the points [1 : ±i : 0].

Let us consider the general polynomial of degree two in X, Y and
Z,

F (X, Y, Z) = aX2 + bY 2 + cZ2 + dY Z + eXZ + fXY,

where a, b, c, d, e and f are in K. Thus polynomials of degree two are
naturally in correspondence with K6. On the other, if F = λG, λ 6= 0,
then F and G define the same zero locus. Over an algebraically closed
field, the converse is true. Thus the set of conics in P2 is naturally in
bijection with K6 modulo scalars, that is, P5.

Given that we want to count how many circles pass through two
points and that a circle is nothing more than a conic that passes
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through two fixed points, the natural problem is to identify the fol-
lowing locus:

Hp = { [a : b : c : d : e : f ] ∈ P5 |F = 0 passes through p },
where p ∈ P2 is a point.

Lemma 10.11. Hp ⊂ P5 is a hyperplane (that is, a linear space defined
by a single equation).

Proof. Indeed, if p = [u : v : w], then [a : b : c : d : e : f ] ∈ Hp if and
only if [a : b : c : d : e : f ] satisfies the linear equation

u2A+ v2B + w2C + (vw)D + (uw)E + (uv)F = 0. �

For example, the conic passes through p = [0 : 0 : 1] if and only if
the coefficient of Z2 is zero if and only if c = 0.

Lemma 10.12. Suppose we are given five points p1, p2, p3, p4 and p5,
and we are working over an infinite field.

Then, either there is a unique conic through these points, or infinitely
many.

Proof. Let Hi ⊂ P5 be the hyperplane corresponding to pi. Then the
set of conics passing through the given points corresponds to the inter-
section of the five hyperplanes. As the intersection of linear spaces is
a linear space, the result follows. �

Theorem 10.13. There is a unique conic passing through five points
in linear general position.

Proof. Suppose not. Then the intersection of the five hyperplanes H1,
H2, H3, H4 and H5 would contain a line, call it l ⊂ P5. Pick two points
of this line, corresponding to two quadratic polynomials F and G. As
any two points on l, span l, the general point of l is given as [sF + tG],
for [s : t] ∈ P1. Thus the curve sF + tG = 0 contains the five given
points p1, p2, p3, p4 and p5.

Pick any point p ∈ P2. Then we may find [s : t] ∈ P1 such that
(sF + tG)(p) = 0. Indeed, if G(p) = 0, take [s : t] = [0 : 1], else set
s = 1 and

t = −F (p)

G(p)
.

Now pick p collinear with p1 and p2. Then the conic C corresponding
to sF + tG = 0 contains the three points p1, p2 and p of the line
m = 〈p1, p2〉. Pick coordinates so that m is given as Z = 0. Then the
quadratic polynomial

F (X, Y, 0),
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has three zeroes. It follows that F (X, Y, 0) = 0, so that F (X, Y, Z) =
ZG(X, Y, Z). In other words the curve C is the union of the two lines
Z = 0 and G = 0. But then one of the two lines contains three of
our five points, which contradicts our assumption that the points are
in linear general position. �

Corollary 10.14. There is a unique circle passing through three non-
collinear points in R2.

Proof. Note that the line spanned by the points [1 : ±i : 0] is the line
at infinity of P2

C. Thus given three points p, q and r in R2, which are
not collinear, then the five points p, q, r and [1 : ±i : 0] are in linear
general position in P2

C.
By (10.13) there is a unique conic through the five given points. Now

of the five hyperplanes that define this conic, three are defined by lin-
ear equations with real coefficients and even though the other two have
complex roots, the equations of the hyperplanes are complex conju-
gates. Since the set of solutions to a set of equations which is invariant
under complex conjugation, is invariant under complex conjugation, it
follows that this unique solution has coefficients which are invariant
under complex conjugation, which is to say that it is a point with real
coordinates. In particular the definining equation of the unique conic
passing through the five given points is real. On the other hand the
corresponding curve contains three real points. Therefore by (10.9)
there is a unique circle through the three real points. �

Note the fancy footwork needed to deal with the problem of working
over non algebraically closed fields.

It turns out there are other ways to prove (10.13).
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