
1. Some affine geometry

Apollonius was perhaps the greatest of the Greek geometers. He
lived around 200 BC. One of his most famous results is:

The locus of points, whose distances from two fixed points are in a
constant ratio, is a circle.

This is one of the harder results one can prove using only classical
geometry. However using just a little algebra makes the result almost
completely trivial.

Change coordinates so that the first point A is at the origin and the
second point B lies on the x-axis,

A = (0, 0) B = (a, 0).

Let P = (x, y) be a general point of the locus described above. Let
m be the fixed ratio. By assumption

|PA| = m|PB|.

So we have

|PA|2 = x2 + y2 |PB|2 = (x− a)2 + y2.

Thus

x2 + y2 = m2(x− a)2 +m2y2.

After a little manipulation we get

(x− α)2 + y2 = α2 − β

for appropriate α and β, that is, we get a circle.
There are two general principles to be gleaned from this example:

• To solve problems in analytic geometry, a little bit of algebra
goes a long way.
• Since we introduce coordinates to solve this problem, we get to

choose where to put the origin.

Definition 1.1. Let K be a field. Affine n-space over K, is a copy
of a K-vector space V of dimension n. An affine linear subspace
Λ is is the translate of a linear subspace of V .

An
K is the copy of affine space associated to the standard vector space

V = Kn of dimension n.

In other words, affine space is nothing more than a vector space
without a preferred point and a line in the affine plane is what a calculus
student would call a line but not an undergraduate math major. We
will invariably drop the word affine.
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Definition 1.2. Let K be an algebraically closed field.
An affine subvariety V of An

K is any subset of An
K defined by the

zeroes of a collection of polynomials.

Example 1.3. Any linear space is an affine variety; any conic is an
affine variety (a parabola, circle, ellipse, hyperbola, etc).

C = { (x, y) ∈ A2
K | y2 = x2 + x3 }

is an affine variety called a nodal cubic; it is the zero set of y2−x2−x3.
Similarly

C = { (x, y) ∈ A2
K | y2 = x3 }

is an affine variety called a cuspidal cubic; it is the zero set of y2−x3.

If S is a set of polynomials in the polynomial ring K[x1, x2, . . . , xn]
it is convenient to let V (S) be the common zero set.

Definition-Lemma 1.4. The Zariski topology on An
K is the topol-

ogy whose closed subsets are the affine subvarieties.

Proof. The empty set is defined by the polynomial 1 and An
K is defined

by the polynomial 0.
If Vα are closed subsets then we may find subsets Sα ⊂ K[x1, x2, . . . , xn]

such that Vα = V (Sα). If

S =
⋃
α

Sα then V =
⋂
α

V (S),

so that the intersection of closed sets is closed.
If V1 and V2 are two closed sets defined by polynomial subsets S1

and S2 so that Vi = V (Si) then

V = V1 ∪ V2 = V (S),

where S = S1S2 is the set of all products. Thus the union of two closed
subsets is closed and we have a topology. �

Example 1.5. Note that any finite subset of An
K is a Zariski closed

subset.

Example 1.6. Consider closed subsets of A1
K. If f(x) ∈ K[x] is a

polynomial in one variable then f(x) factors,

f(x) = λ(x− α1)(x− α2) · · · (x− αn).

Thus either f(x) is identically zero, or constant but never zero, or f(x)
vanishes at only finitely many points α1, α2, . . . , αn. In particular the
only proper closed subsets of A1

K are finite subsets. Thus the Zariski
topology is not Hausdorff.
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Given an affine subvariety V it is natural to wonder about the degrees
of polynomials definining V . Let f be a polynomial with no constant
term. Note that f and x1f , x2f , . . . , xnf have the same zero set, so
clearly we should focus on minimising the degrees of a defining set S.

If V consists of d points in An
K then it is not hard to see that V is

defined by polynomials of degree d. Moreover, in general, we cannot
do better than this. If n = 1 then the smallest degree of a polynomial
vanishing at d points is d; more generally if we take d points on a line
then and if f(x1, x2, . . . , xn) is a polynomial vanishing on those points
but not on the line then f has degree at least d.

Definition 1.7. The span of a subset V ⊂ An
K is the smallest linear

space containing V .
We say that the points of V are in linear general position if any

subset of k ≤ n points spans a linear space of dimension k − 1.

Remark 1.8. If V has at least n+ 1 points then V is in linear general
position if and only if any subset of cardinality n + 1 spans the whole
of An

K.

Note that a linear space is the same as a Zariski closed subset defined
by linear polynomials. A hyperplane is a linear space defined by a
single equation.

Theorem 1.9. If V ⊂ An
K is any set of d ≤ 2n points in linear general

position then V is defined by quadratic polynomials.

Proof. We do the case d = 2n; the general case follows in a similar
fashion.

We have
V = { p1, p2, . . . , p2n }.

Let q be a point which belongs to the zero set of every quadratic poly-
nomial which vanishes on the whole of V . We have to show that q ∈ V .

Suppose that we decompose V into two subsets of cardinality n,
V = V1 ∪ V2. Both subsets V1 and V2 define hyperplanes H1 and H2,
both of which are defined by linear polynomials. The union H1 ∪H2 is
defined by the product, a quadratic polynomial. By what we just said,
q ∈ H1 ∪H2, so that q must belong to either H1 or H2.

Let k ≤ n be the smallest integer such that q belongs to the span of
k points of p1, p2, . . . , p2n. Renumbering we may assume that q belongs
to the span of p1, p2, . . . , pk. Pick a subset Σ of cardinality n− k+ 1 of
V − { p1, p2, . . . , pk }. Let Λ be the hyperplane spanned by p2, p3, . . . ,
pk and Γ. Note that q does not belong Λ, since p1 belongs to the span
of p2, p3, . . . , pk and q and Λ doesn’t contain p1.
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Thus q belongs to the hyperplane spanned by the other n points of
V . Varying Γ, q must belong to the intersection of these hyperplanes,
which is just p1. Thus q = p1. �

Definition-Lemma 1.10. Let V ⊂ An
K be any subset.

The ideal I = I(V ) of V is the set of all polynomials vanishing on
V ,

I = { f ∈ K[x1, x2, . . . , xn] | f(v) = 0, v ∈ V } E K[x1, x2, . . . , xn].

Proof. We check I is an ideal. 0 ∈ I and so I is non-empty. If f and
g ∈ I then and p and q ∈ K[x1, x2, . . . , xn] then

(pf + qg)(v) = p(v)f(v) + q(v)g(v) = 0 for all v ∈ V,
so that pf + qg ∈ I and I is an ideal. �

Lemma 1.11.

(1) If S1 ⊂ S2 ⊂ K[x1, x2, . . . , xn] then V (S2) ⊂ V (S1).
(2) If V1 ⊂ V2 ⊂ An

K then I(V2) ⊂ I(V1).
(3) If V1 and V2 are two subsets of An

K and Ii = I(Vi) then

I(V1 ∪ V2) = I(V1) ∩ I(V2).

(4) V ⊂ An
K is any subset then V (I(V ) is the Zariski closure of V .

Proof. Straightforward. �

If S ⊂ K[x1, x2, . . . , xn] is a collection of polynomials it is natural
to consider the ideal of all polynomials vanishing on the zero set of S,
that is, to consider I(V (S)). The first guess is that this is simply the
ideal generated by S.

Example 1.12. Let I = 〈x2〉 ⊂ K[x]. The zero set is the origin in A1
K

and the ideal of the zero set is 〈x〉.

All rings R are commutative with an identity.

Definition-Lemma 1.13. Let I E R be an ideal in a ring R. The
radical of I, denoted

√
I, is the ideal of all elements of r such that

rm ∈ I for some natural number m.
We say that I is a radical ideal if it is equal to its radical.

Proof. 0 ∈
√
I so that the radical is non-empty. If i and j ∈

√
I then

we may find m and n such that im, jn ∈ I. Let r and s ∈ R.

(ri+ sj)m+n =
∑
l

(
n+m

l

)
rlilsn+m−ljn+m−l ∈ I,

so that ri+ sj ∈
√
I and

√
I is an ideal. �
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Theorem 1.14 (Hilbert’s Nullstellensatz). Let K be an algebraically
closed field.

If I ⊂ K[x1, x2, . . . , xn] then

I(V (I)) =
√
I.

Corollary 1.15. There is an inclusion reversing correspondence be-
tween Zariski closed subsets of An

K and radical ideals of K[x1, x2, . . . , xn].

Definition 1.16. Let X be a topological space. We say that X is
irreducible if for every pair of closed subsets X1 and X2, such that
X1 ∪X2 = X, we have either X = X1 or X = X2.

Compare this definition with the definition of connected. Clearly the
definition of irreducible is stronger than connected; in practice most
connected topological spaces are rarely irreducible. For example if X
is irreducible (and has at least two points) then it is not Hausdorff.

Lemma 1.17. Let X be an irreducible topological space.
Then every non-empty open subset is dense.

Proof. Let U be a non-empty open subset. If U is not dense then there
is another non-empty open subset U such that U ∩ V is empty. Let
F and G be their complements. Then F and G are two proper closed
subsets, whose union is X, a contradiction. �

Lemma 1.18. A Zariski closed subset X ⊂ An
K is irreducible if and

only if I(X) is a prime ideal.

Proof. Suppose that X is irreducible. Let f1 and f2 be two elements
of K[x1, x2, . . . , xn] such that f1f2 ∈ I. Let Xi = V (fi). Then Xi are
closed subsets of X and X = X1 ∪X2 since f1f2 vanishes on X. As X
is irreducible X = Xi some i and so fi ∈ I. But then I is prime.

Now suppose that I is prime. Let X = X1 ∪X2 and let Ii = I(Xi).
Then

I = I(X) = I(X1 ∪X2) = I1 ∩ I2.
As I is prime, I = Ii some i and X = Xi. �

Example 1.19. A finite set is irreducible if and only if its cardinality
is less than two.

The nodal and cuspidal cubics are irreducible.

Definition 1.20. Let X be a topological space. We say that X is
Noetherian if the set of closed subsets satisfies DCC (the descending
chain condition). That is, any sequence of descending closed subsets

· · · ⊂ Xn ⊂ Xn−1 ⊂ · · · ⊂ X1 ⊂ X0.
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eventually stablises, so that we may find n0 such that Xn = Xn+1 for
all n ≥ n0.

Theorem 1.21. Any affine variety is Noetherian.

Proof. Let X ⊂ An be a closed subset. We may as well suppose that
X = An. By (1.11) it suffices to check that the set of radical ideals
satisfies the ACC. But Hilbert’s basis theorem says that the set of all
ideals satisfies the ACC. �

Principle 1.22 (Noetherian Induction). Let P be a property of topo-
logical spaces, satisfying the following inductive hypothesis: if X is a
topological space and every proper closed subset Y ⊂ X satisfies prop-
erty P , then X satisfies property P .

Then every Noetherian topological space satisfies property P .

Proof. Suppose not. Let X be a Noetherian topological space, minimal
with the property that it does not satisfy property P .

Let Y ⊂ X be a proper closed subset. By minimality ofX, Y satisfies
property P . By the inductive hypothesis, X then satisfies property P ,
a contradiction. �

Lemma 1.23. Let X be a Noetherian topological space.
Then X has a decomposition into closed irreducible factors

X = X1 ∪X2 ∪ · · · ∪Xn,

where Xi is not contained in Xj, unique up to re-ordering of the factors.

Proof. If X is irreducible there is nothing to prove. Otherwise we may
assume that X = A ∪ B, where A and B are proper closed subsets.
By the principle of Noetherian Induction, we may assume that A and
B are the finite union of closed irreducible factors. Taking the union,
and discarding any redundant factors (that is, any subset contained in
another subset), we get the existence of such a decomposition.

Now suppose that

X1 ∪X2 ∪ · · · ∪Xm = Y1 ∪ Y2 ∪ · · · ∪ Yn.
Consider

Xm = (Xm ∩ Y1) ∪ (Xm ∩ Y2) ∪ (Xm ∩ Y3) ∪ · · · ∪ (Xm ∩ Yn).

By irreducibility of Xm, there is an index j such that Xm ⊂ Yj. Thus
m ≤ n and for every i there is a j such that Xi ⊂ Yj. By symmetry,
for every j there is a k such that Yj ⊂ Xk. In this case Xi ⊂ Xk and
so i = k, by assumption. Thus Xi = Yj. �
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