Math 20E Homework Assignment 3 Due 11:00pm Thursday, February 16, 2023

- 1. Evaluate the path integral $\int_{\mathbf{c}} f(x, y, z) ds$ with f(x, y, z) = x + y + z and $\mathbf{c}(t) = (\sin(t), \cos(t), t)$ for $t \in [0, 2\pi]$.
- 2. Evaluate $\int_{\mathbf{c}} f \, ds$, where f(x, y, z) = z and $\mathbf{c}(t) = (t \cos(t), t \sin(t), t)$ for $0 \le t \le t_0$.
- 3. Find the average z coordinate on the path $\mathbf{c}(t) = (t\cos(t), t\sin(t), t)$ for $0 \le t \le t_0$.
- 4. Evaluate $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}$, where $\mathbf{F}(x,y) = (-xy, x^2)$ and \mathbf{c} is the path along the unit circle $x^2 + y^2 = 1$ beginning at (1,0) and ending at (0,1).
- 5. Evaluate the line integral $\int_{\mathbf{c}} yz \, dx + xz \, dy + xy \, dz$, where **c** consists of the straight-line segments joining (1,0,0) to (0,1,0) to (0,0,1).
- 6. Evaluate the line integral $\int_C (y^2 + 2xz) dx + (2xy + z^2) dy + (2yz + x^2) dz$, where C is an oriented simple curve from (1,1,1) to (0,2,3).
- 7. Let S be the surface determined by the equation $x^3 + 3xy + z^2 = 2$, with $z \ge 0$.
 - (a) Find a parametrization $\Phi: D \subseteq \mathbb{R}^2 \to S \subseteq \mathbb{R}^3$.
 - (b) Find an equation for the tangent plane to S at the point (1,1/3,0).
- 8. Find the area of the portion of the unit sphere that is inside the mouth of the cone $z \ge \sqrt{x^2 + y^2}$.
- 9. The cylinder $x^2 + y^2 = x$ divides the unit sphere S into two regions S_1 and S_2 , where S_1 is outside the cylinder and S_2 is inside the cylinder. Find the ratio $A(S_1)/A(S_2)$ of the areas of S_1 and S_2 .
- 10. Find the area of the surface S defined by x + y + z = 1, with $x^2 + 3y^2 \le 1$.