Math 20E Homework Assignment 2
Due 11:00pm Thursday, February 2, 2023

1. Change the order integration and evaluate:

$$
\int_{y=0}^{1} \int_{x=y}^{1} \sin \left(x^{2}\right) d x d y .
$$

2. Change the order integration and evaluate:

$$
\int_{y=0}^{1} \int_{x=\sqrt{y}}^{1} e^{x^{3}} d x d y
$$

3. Evaluate the integral $\iiint_{W} z d x d y d z$; where W is the region bounded by $x=0, \quad y=0$, $z=0, \quad z=1$, and the cylinder $x^{2}+y^{2}=1$, with $x \geq 0, y \geq 0$.
4. Let D^{*} be the parallelogram with vertices at $(-1,3),(0,0),(2,-1)$, and $(1,2)$. Let D be the rectangle $D=[0,1] \times[0,1]$. Find a T such that D is the image set of D^{*} under T; that is, $D=T\left(D^{*}\right)$.
5. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the spherical coordinate mapping defined by $(\rho, \phi, \theta) \mapsto(x, y, z)$, where

$$
x=\rho \sin (\phi) \cos (\theta), \quad y=\rho \sin (\phi) \sin (\theta), \quad z=\rho \cos (\phi) .
$$

Let D^{*} be the set of points (ρ, ϕ, θ) such that $\rho \in[0,1], \quad \phi \in[0, \pi], \quad \theta \in[0,2 \pi]$.
(a) Find $D=T\left(D^{*}\right)$.
(b) Is T one-to-one? If not, can we eliminate a subset $S \subseteq D^{*}$ so that T is one-to-one on the remainder $D^{*} \backslash S=\left\{(x, y, z) \in D^{*} \mid(x, y, z) \notin S\right\}$?
6. Evaluate $\iint_{D} x^{2} d x d y$ where D is determined by the two conditions $0 \leq x \leq y$ and $x^{2}+y^{2} \leq 1$.
7. Evaluate $\iiint_{W} \sqrt{x^{2}+y^{2}+z^{2}} e^{-\left(x^{2}+y^{2}+z^{2}\right)} d x d y d z$, where W is the solid bounded by the two spheres $x^{2}+y^{2}+z^{2}=a^{2}$ and $x^{2}+y^{2}+z^{2}=b^{2}$ with $0<a<b$.
8. Evaluate $\iint_{R}(x+y) d x d y$, where R is the rectangle in the $x y$-plane with vertices at $(0,1),(1,0),(3,4),(4,3)$.
9. Show that the path $\mathbf{c}(t)=\left(\sin (t), \cos (t), e^{t}\right)$ is a flow line of the vector field $\mathbf{F}(x, y, z)=(y,-x, z)$.
10. Let $\mathbf{F}(x, y, z)=(y z, x z, x y)$. Find a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\mathbf{F}=\nabla f$.

