Math 20H	3	
February	28,	2019

Midterm Exam 2 v. A	Name:	
(Total Points: 25)	PID:	

Instructions

- 1. Write your Name and PID in the spaces provided above.
- 2. Make sure your Name is on every page.
- 3. No calculators, tablets, phones, or other electronic devices are allowed during this exam.
- 4. Put away ANY devices that can be used for communication or can access the Internet.
- 5. You may use one handwritten page of notes, but no books or other assistance during this exam.
- 6. Read each question carefully and answer each question completely.
- 7. Write your solutions clearly in the spaces provided. Work on scratch paper will not be graded.
- 8. Show all of your work. No credit will be given for unsupported answers, even if correct.
- (1 point) 0. Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
- (6 points) 1. Evaluate the indefinite integral $\int \frac{1}{(x^2+4)^{3/2}} dx$

$\mathbf{v.} \mathbf{A}$	(page	2	of	4
	(<u>1</u>			• ,

Name: _____

(3 points) 2. Evaluate the indefinite integral $\int e^{-i3x} \sin(4x) dx$. Leave the result in exponential form.

(3 points) 3. Let $\{a_n\}$ be the sequence whose n^{th} term is defined by $a_n = \sqrt{n+3} - \sqrt{n}$. Determine $\lim_{n \to \infty} a_n$.

v. A	(page	3	of	4	`
	(I . O .			•	

Name: _____

(6 points) 4. Evaluate the indefinite integral $\int \frac{2x^2 - 9x - 11}{(x-1)(x+2)(x-3)} dx$.

(6 points) 5. Determine which of the following improper integrals converge and justify your conclusion. In order to earn credit you must supply a correct justification.

(a)
$$\int_{1}^{\infty} \frac{1 + \sin^2(x)}{\sqrt{x}} \, dx$$

(b) $\int_0^1 \frac{1 + \sin^2(x)}{\sqrt{x}} dx$