1. Diagonalize each of the following matrices, if possible; otherwise, explain why the matrix is not diagonalizable. (Note: "Diagonalize A " means "Find a diagonal matrix D and an invertible matrix P for which $P^{-1} A P=D$." You need not compute P^{-1} if you explain how you know that P is invertible.)
(a) $A=\left[\begin{array}{rrrr}4 & -3 & 0 & 9 \\ 0 & 3 & 1 & -2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$
(b) $B=\left[\begin{array}{rrrr}3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 1 & 0 & 0 & -2\end{array}\right]$
2. Let $S=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ 0 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 3 \\ -2\end{array}\right]\right\}$. Find a basis for S^{\perp}.
3. Recall that $\langle p, q\rangle=p(-1) q(-1)+p(0) q(0)+p(1) q(1)$ defines an inner product on \mathbb{P}_{2}, the space of polynomials with degree ≤ 2. Let $\boldsymbol{\tau} \in \mathbb{P}_{2}$ be the polynomial $\boldsymbol{\tau}(t)=t$. Find the unit vector $\hat{\boldsymbol{\tau}}$ in the direction of $\boldsymbol{\tau}$.
4. Let $\mathbf{u}_{1}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$, and $\mathbf{x}=\left[\begin{array}{l}3 \\ 8 \\ 4\end{array}\right]$.
(a) Show that $\mathcal{U}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthogonal basis for \mathbb{R}^{3}.
(b) Find $[\mathrm{x}]_{\mathcal{U}}$, the \mathcal{U}-coordinate vector of \mathbf{x}.
5. Let U and V be $n \times n$ orthogonal matrices. Show that $U V$ is an orthogonal matrix.
6. Let W be a subspace of \mathbb{R}^{n} with an orthogonal basis $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{p}\right\}$, and let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right\}$ be an orthogonal basis for W^{\perp}.
(a) Explain why $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right\}$ is an orthogonal set.
(b) Explain why $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right\}$ spans \mathbb{R}^{n}.
(c) Show that $\operatorname{dim} W+\operatorname{dim} W^{\perp}=n$.
