1. Let $A=\left[\begin{array}{rrr}4 & -2 & -2 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$.
(a) Find a basis for the eigenspace of A corresponding to $\lambda=1$.
(b) Find a basis for the eigenspace of A corresponding to $\lambda=2$.
(c) Find a basis for the eigenspace of A corresponding to $\lambda=3$.
2. Suppose λ is an eigenvalue of an invertible matrix A. Show that $\frac{1}{\lambda}$ is an eigenvalue of A^{-1}.

3 . Let A be a $n \times n$ matrix.
(a) Show that A and A^{T} have the same eigenvalues.
(b) Do A and A^{T} necessarily have the same eigenvectors? Explain.
4. Let $A=\left[\begin{array}{rrr}-1 & -3 & 0 \\ 0 & 4 & 0 \\ 1 & 1 & 2\end{array}\right]$.
(a) Find the characteristic polynomial of A.
(b) Find the eigenvalues of A and a basis for each of the corresponding eigenspaces of A. (Hint: One of the eigenvalues is $\lambda=2$.)
5. Let $A=\left[\begin{array}{rrrr}5 & -2 & 6 & -1 \\ 0 & 3 & h & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1\end{array}\right]$.

Find the value(s) of h for which the dimension of the eigenspace of A corresponding to $\lambda=5$ is 2 .
6. Let A be a $n \times n$ matrix with n distinct real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, so that

$$
\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right) .
$$

Explain why $\operatorname{det}(A)$ is equal to the product of the n eigenvalues of A.

