1. The matrices

$$
A=\left[\begin{array}{rrrrrr}
1 & 1 & -3 & 7 & 9 & -9 \\
1 & 2 & -4 & 10 & 13 & -12 \\
1 & -1 & -1 & 1 & 1 & -3 \\
1 & -3 & 1 & -5 & -7 & 3 \\
1 & -2 & 0 & 0 & -5 & -4
\end{array}\right] \quad B=\left[\begin{array}{rrrrrr}
1 & 0 & -2 & 0 & 9 & 2 \\
0 & 1 & -1 & 0 & 7 & 3 \\
0 & 0 & 0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

are row equivalent.
(a) Find a basis for $\operatorname{Row}(A)$, the row space of A.
(b) Find a basis for $\operatorname{Col}(A)$, the column space of A.
(c) Find a basis for $\operatorname{Nul}(A)$, the null space of A.
(d) Determine the dimension of $\operatorname{Nul}\left(A^{T}\right)$, the null space of A^{T}.
2. Let $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4}\end{array}\right]$ be a 4×4 matrix with reduced echelon form $\tilde{A}=\left[\begin{array}{cccc}1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$. If $\mathbf{a}_{1}=\left[\begin{array}{c}-3 \\ 5 \\ 2 \\ 1\end{array}\right]$ and $\mathbf{a}_{2}=\left[\begin{array}{c}4 \\ -3 \\ 7 \\ -1\end{array}\right]$, determine \mathbf{a}_{3} and \mathbf{a}_{4}.
3. The set $\mathcal{B}=\left\{1+t^{2}, t+t^{2}, 1+2 t+t^{2}\right\}$ is a basis for \mathbb{P}_{2}, the vector space of polynomials with degree at most 2 . Find the \mathcal{B}-coordinate vector for $\mathbf{p}=6+3 t+t^{2}$.
4. Find all values of λ for which $\operatorname{det}\left|\begin{array}{cc}2-\lambda & 4 \\ 3 & 3-\lambda\end{array}\right|=0$.
5. Let A be a $n \times n$ matrix. Explain why each of the following statements is true. Be sure to state the appropriate theorem or theorems that apply.
(a) If A is invertible, then $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
(b) If $\operatorname{det}\left(A^{3}\right)=0$, then A is not invertible.
6. Find the volume of the parallelepiped with one vertex at the origin $(0,0,0)$ and adjacent vertices at $(1,3,0),(-2,0,2)$, and $(-1,3,-1)$.

