Math 18

1. The matrices

	1	1	-3	$\overline{7}$	9	-9 -]	1	0	-2	0	9	2]
A =	1	2	-4	10	13	-12		0	1	-1	0	7	$\begin{bmatrix} 2\\ 3 \end{bmatrix}$
	1	-1	-1	1	1	-3	B =	0	0	0	1	-1	-2
	1	-3	1	-5	-7	3		0	0	0	0	0	0
	1	-2	0	0	-5	-4 _	J	0	0	0	0	0	0

are row equivalent.

- (a) Find a basis for Row(A), the row space of A.
- (b) Find a basis for Col(A), the column space of A.
- (c) Find a basis for Nul(A), the null space of A.
- (d) Determine the dimension of Nul (A^T) , the null space of A^T .

2. Let $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{a}_4]$ be a 4 × 4 matrix with reduced echelon form $\tilde{A} = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

If
$$\mathbf{a}_1 = \begin{bmatrix} -3\\5\\2\\1 \end{bmatrix}$$
 and $\mathbf{a}_2 = \begin{bmatrix} 4\\-3\\7\\-1 \end{bmatrix}$, determine \mathbf{a}_3 and \mathbf{a}_4 .

- 3. The set $\mathcal{B} = \{1 + t^2, t + t^2, 1 + 2t + t^2\}$ is a basis for \mathbb{P}_2 , the vector space of polynomials with degree at most 2. Find the \mathcal{B} -coordinate vector for $\mathbf{p} = 6 + 3t + t^2$.
- 4. Find all values of λ for which det $\begin{vmatrix} 2-\lambda & 4\\ 3 & 3-\lambda \end{vmatrix} = 0.$
- 5. Let A be a $n \times n$ matrix. Explain why each of the following statements is true. Be sure to state the appropriate theorem or theorems that apply.
 - (a) If A is invertible, then $\det(A^{-1}) = \frac{1}{\det(A)}$.
 - (b) If det $(A^3) = 0$, then A is not invertible.
- 6. Find the volume of the parallelepiped with one vertex at the origin (0, 0, 0) and adjacent vertices at (1, 3, 0), (-2, 0, 2), and (-1, 3, -1).