1. Let A, B, and X be $n \times n$ matrices such that A, X, and $A-A X$ are invertible with $(A-A X)^{-1}=X^{-1} B$.
(a) Explain why B is invertible.
(b) Solve the equation $(A-A X)^{-1}=X^{-1} B$ for X. If you need to invert a matrix, explain why that matrix is invertible.
2. Let A be an invertible matrix. Explain why the columns of A^{-1} are linearly independent.
3. Let W be the set of all vectors of the form $\left[\begin{array}{c}s+3 t \\ s-t \\ 2 s-t \\ s+t\end{array}\right]$.
(a) Show that W is a subspace of \mathbb{R}^{4}.
(b) Let $\mathbf{v}=\left[\begin{array}{l}9 \\ 1 \\ 4 \\ 5\end{array}\right]$. Determine whether or not $\mathbf{v} \in W$.
4. Let

$$
A=\left[\begin{array}{rrrrr}
1 & 5 & -4 & -3 & 1 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Find a linearly independent set of vectors that span $\operatorname{Nul}(A)$, the null space of A.
5. The following matrices A and B are row equivalent.

$$
A=\left[\begin{array}{rrrrr}
1 & 2 & 1 & 11 & -3 \\
2 & 4 & 1 & 15 & 2 \\
1 & 2 & 0 & 4 & 5 \\
3 & 6 & 1 & 19 & -2
\end{array}\right], \quad B=\left[\begin{array}{lllll}
1 & 2 & 0 & 4 & 0 \\
0 & 0 & 1 & 7 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

(a) Find a basis for $\operatorname{Nul}(A)$, the null space of A.
(b) Find a basis for $\operatorname{Col}(A)$, the column space of A.
6. Let V be an n-dimensional vector space. Suppose $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is a subset of V containing k vectors with $k<n$. Explain why S cannot span V.

