1. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=m x+b$.
(a) Show that f is a linear transformation when $b=0$.
(b) Find a property of linear transformations that is violated when $b \neq 0$.
2. Let $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \mathbf{e}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$, and let $\mathbf{y}_{1}=\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right], \mathbf{y}_{2}=\left[\begin{array}{l}4 \\ 2 \\ 6\end{array}\right], \mathbf{y}_{3}=\left[\begin{array}{c}3 \\ -1 \\ 1\end{array}\right]$.

Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear transformation that maps \mathbf{e}_{1} to $\mathbf{y}_{1}, \mathbf{e}_{2}$ to \mathbf{y}_{2}, and \mathbf{e}_{3} to \mathbf{y}_{3}.
(a) Find the image of $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ under T.
(b) Is T one-to-one? Justify your answer.
(c) Does T map \mathbb{R}^{3} onto \mathbb{R}^{3} ? Justify your answer.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that first reflects points through the horizontal x_{1}-axis, and then reflects points through the line $x_{1}=x_{2}$.
(a) Determine the standard matrix for T.
(b) Show that T is a rotation about the origin and determine the angle of rotation.
4. Let $\mathbf{u}=\left[\begin{array}{c}-2 \\ 3 \\ -4\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$.
(a) Compute $\mathbf{u}^{T} \mathbf{v}$ and $\mathbf{v}^{T} \mathbf{u}$.
(b) Compute $\mathbf{u} \mathbf{v}^{T}$ and $\mathbf{v} \mathbf{u}^{T}$.
5. Let $A=\left[\begin{array}{cc}2 & -3 \\ 5 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}4 & 3 \\ -5 & k\end{array}\right]$. Determine the value(s) of k, if any, for which $A B=B A$.
6. Let $A=\left[\begin{array}{cc}3 & -6 \\ -1 & 2\end{array}\right]$.
(a) Construct a 2×2 matrix B with two distinct nonzero columns such that $A B=O$, the zero matrix.
(b) Construct a 2×2 matrix C with two distinct nonzero columns such that $C A=O$, the zero matrix.
(c) Does $A C=B A$ for the matrices B and C you found above?

