- Math 18
- 1. Define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = mx + b.
 - (a) Show that f is a linear transformation when b = 0.
 - (b) Find a property of linear transformations that is violated when $b \neq 0$.

2. Let
$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, and let $\mathbf{y}_1 = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$, $\mathbf{y}_2 = \begin{bmatrix} 4 \\ 2 \\ 6 \end{bmatrix}$, $\mathbf{y}_3 = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$.

Suppose $T : \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation that maps \mathbf{e}_1 to \mathbf{y}_1 , \mathbf{e}_2 to \mathbf{y}_2 , and \mathbf{e}_3 to \mathbf{y}_3 .

- (a) Find the image of $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ under T.
- (b) Is T one-to-one? Justify your answer.
- (c) Does T map \mathbb{R}^3 onto \mathbb{R}^3 ? Justify your answer.
- 3. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that first reflects points through the horizontal x_1 -axis, and then reflects points through the line $x_1 = x_2$.
 - (a) Determine the standard matrix for T.
 - (b) Show that T is a rotation about the origin and determine the angle of rotation.

4. Let
$$\mathbf{u} = \begin{bmatrix} -2\\ 3\\ -4 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} a\\ b\\ c \end{bmatrix}$

- (a) Compute $\mathbf{u}^T \mathbf{v}$ and $\mathbf{v}^T \mathbf{u}$.
- (b) Compute $\mathbf{u}\mathbf{v}^T$ and $\mathbf{v}\mathbf{u}^T$.

5. Let
$$A = \begin{bmatrix} 2 & -3 \\ 5 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 3 \\ -5 & k \end{bmatrix}$. Determine the value(s) of k, if any, for which $AB = BA$.

- 6. Let $A = \begin{bmatrix} 3 & -6 \\ -1 & 2 \end{bmatrix}$.
 - (a) Construct a 2×2 matrix B with two distinct nonzero columns such that AB = O, the zero matrix.
 - (b) Construct a 2×2 matrix C with two distinct nonzero columns such that CA = O, the zero matrix.
 - (c) Does AC = BA for the matrices B and C you found above?