1. Let $A=\left[\begin{array}{rrr}1 & -3 & -4 \\ -3 & 2 & 6 \\ 5 & -1 & -8\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$.
(a) Show that the matrix equation $A \mathbf{x}=\mathbf{b}$ does not have a solution for all possible \mathbf{b}; that is, show that there exists at least one \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ does not have a solution.
(b) Describe the set of all \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ does have a solution.
2. Let $\mathbf{v}_{1}=\left[\begin{array}{c}0 \\ 0 \\ -2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}0 \\ -3 \\ 8\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}4 \\ -1 \\ -5\end{array}\right]$.

Determine whether or not $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ spans \mathbb{R}^{3}. Clearly explain your reasoning.
3. Let $\mathbf{p}=\left[\begin{array}{c}2 \\ -5 \\ 3\end{array}\right]$ and $\mathbf{q}=\left[\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right]$.

Find a parametric equation for the line L passing through \mathbf{p} and \mathbf{q}.
(Hint: L is parallel to $\mathbf{q}-\mathbf{p}$.)
4. Suppose $A \mathbf{x}=\mathbf{b}$ has a solution. Explain why the solution is unique precisely when $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
5. Find the value(s) of h for which the following set of vectors is linearly dependent, and justify your answer.

$$
\left\{\left[\begin{array}{c}
2 \\
-4 \\
1
\end{array}\right],\left[\begin{array}{c}
-6 \\
7 \\
3
\end{array}\right],\left[\begin{array}{l}
8 \\
h \\
4
\end{array}\right]\right\}
$$

6. Suppose A is a $m \times n$ matrix with the property that for all $\mathbf{b} \in \mathbb{R}^{m}$ the equation $A \mathbf{x}=\mathbf{b}$ has at most one solution. Use the definition of linear independence to explain why the columns of A must be linearly independent.
