1. Find an equation involving a, b, and c that makes the following augmented matrix a consistent system:

$$
\left[\begin{array}{ccc|c}
1 & -4 & 7 & a \\
0 & 3 & -5 & b \\
-2 & 5 & -9 & c
\end{array}\right]
$$

2. Determine the set of all ordered pairs of numbers (h, k) for which the system

$$
\begin{aligned}
x_{1}+h x_{2} & =2 \\
4 x_{1}+8 x_{2} & =k
\end{aligned}
$$

(a) has no solution.
(b) has a unique solution.
(c) has infinitely many solutions.
3. Let $\mathbf{v}_{1}=\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-3 \\ 1 \\ 8\end{array}\right]$, and $\mathbf{y}=\left[\begin{array}{c}h \\ -5 \\ -3\end{array}\right]$.

For what value(s) of h is \mathbf{y} in the plane spanned by \mathbf{v}_{1} and \mathbf{v}_{2} ?
4. Let $A=\left[\begin{array}{ccc}2 & 0 & 6 \\ -1 & 8 & 5 \\ 1 & -2 & 1\end{array}\right]$, let $\mathbf{b}=\left[\begin{array}{c}10 \\ 3 \\ 3\end{array}\right]$, and let W be the set of all linear combinations of the columns of A.
(a) Is \mathbf{b} in W ?
(b) Show that the third column of A is in W.

