Math 142B Homework Assignment 2

Due 11:00pm Thursday, April 25, 2024

1. Suppose f is differentiable on $\mathbb{R}, \quad 1 \leq f^{\prime}(x) \leq 2$ for all $x \in \mathbb{R}$, and $f(0)=0$. Show that $x \leq f(x) \leq 2 x$ for all $x \geq 0$.
2. Let f be differentiable on some interval (c, ∞) such that $\lim _{x \rightarrow \infty}\left[f(x)+f^{\prime}(x)\right]=L$, with L finite.

Show that $\lim _{x \rightarrow \infty} f(x)=L$ and $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$. [Hint: Write $f(x)=\frac{f(x) e^{x}}{e^{x}}$.]
3. Let $f(x)= \begin{cases}x & \text { if } x \in \mathbb{Q}, \\ 0 & \text { otherwise } .\end{cases}$
(a) Compute the upper and lower Darboux integrals for f on the interval $[0, b]$.
(b) Is f integrable on $[0, b]$? Be sure to justify your answer.
4. Let f be a bounded function on $[a, b]$. Suppose there exist sequences $\left(L_{n}\right)$ and $\left(U_{n}\right)$ of upper and lower Darboux sums for f such that $\lim \left(U_{n}-L_{n}\right)=0$.
Show that f is integrable on $[a, b]$ and that $\int_{a}^{b} f=\lim L_{n}=\lim U_{n}$.
5. Let f be integrable on $[a, b]$, and suppose g is a function on $[a, b]$ such that $g(x)=f(x)$ except for finitely many $x \in[a, b]$.
Show that g is integrable on $[a, b]$ and that $\int_{a}^{b} g=\int_{a}^{b} f$.
6. Show that a decreasing function f on $[a, b]$ is integrable.
7. Let f be a bounded function on $[a, b]$ so that there is $B>0$ for which $|f(x)| \leq B$ for all $x \in[a, b]$.
(a) Show that

$$
U\left(f^{2}, P\right)-L\left(f^{2}, P\right) \leq 2 B[U(f, P)-L(f, P)]
$$

for all partitions P of $[a, b]$.
(b) Show that if f is integrable on $[a, b]$, then f^{2} is also integrable on $[a, b]$.
8. Let f and g be integrable functions on $[a, b]$.
(a) Show that $f g$ is integrable on $[a, b]$.
(b) Show that $\max (f, g)$ and $\min (f, g)$ are integrable on $[a, b]$.
9. Suppose f and g are continuous functions on $[a, b]$ such that $\int_{a}^{b} f=\int_{a}^{b} g$. Prove that there exists $x \in(a, b)$ at which $f(x)=g(x)$.
10. (a) Prove that if f and g are continuous functions on $[a, b]$ with $g(t) \geq 0$ for all $t \in[a, b]$, then there exists $x \in(a, b)$ such that

$$
\int_{a}^{b} f(t) g(t) d t=f(x) \int_{a}^{b} g(t) d t .
$$

(b) Show that the Intermediate Value Theorem for Integrals is a special case of part (a).
(c) Does the conclusion in part (a) hold if $[a, b]=[-1,1]$ and $f(t)=g(t)=t$ for all $t \in[a, b]$? Be sure to justify your answer.

