Math 142A Homework Assignment 5

Due Tuesday, March 12, 2024

1. Prove that a polynomial $p(x)$ with odd degree has a least one real zero.
2. Suppose that the function $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Show that for any $n \in \mathbb{N}$ and points $x_{1}, x_{n}, \ldots, x_{n} \in[a, b]$, there is a point $z \in[a, b]$ such that $f(z)=\frac{f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)}{n}$.
3. Suppose that the function $f:[0,1] \rightarrow \mathbb{R}$ is continuous with $f(0)>0$, and $f(1)=0$. Show that there is a number $x_{0} \in(0,1]$ such that $f\left(x_{0}\right)=0$ and $f(x)>0$ for every $x \in\left[0, x_{0}\right)$.
4. Let $f(x)= \begin{cases}0 & \text { if } x=0, \\ \sin \left(\frac{1}{x}\right) & \text { otherwise. }\end{cases}$

Show that f has the intermediate value property on all of \mathbb{R}.
5. Suppose that a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ is periodic; that is, there is a number $p>0$ such that $f(x+p)=f(x)$ for all $x \in \mathbb{R}$. Show that $f: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous.
6. Prove that if f is uniformly continuous on a bounded set S, then f is a bounded function on S.
7. Let f be a continuous function on $[0, \infty)$. Prove that if f is uniformly continuous on $[k, \infty)$ for some $k>0$, then f is uniformly continuous on $[0, \infty)$.
8. Let f be a continuous function on $[a, b]$. Show that the function f^{*} defined by

$$
f^{*}(x)=\sup \{f(y) \mid a \leq y \leq x\}, \text { for } x \in[a, b],
$$

is an increasing continuous function on $[a, b]$.
9. Suppose the limits $L_{1}=\lim _{x \rightarrow a^{+}} f_{1}(x)$ and $L_{2}=\lim _{x \rightarrow a^{+}} f_{2}(x)$ both exist.
(a) Show that if $f_{1}(x) \leq f_{2}(x)$ for all x in some interval (a, b), then $L_{1} \leq L_{2}$.
(b) Suppose $f_{1}(x)<f_{2}(x)$ for all x in some interval (a, b). Can you conclude that $L_{1}<L_{2}$?
10. Show that if $\lim _{x \rightarrow a^{+}} f_{1}(x)=\lim _{x \rightarrow a^{+}} f_{3}(x)=L$ and if $f_{1}(x) \leq f_{2}(x) \leq f_{3}(x)$ for all x in some interval (a, b), then $\lim _{x \rightarrow a^{+}} f_{2}(x)=L$. (Note: Be sure to show that $\lim _{x \rightarrow a^{+}} f_{2}(x)$ exists, since this is not assumed.)

