Math 142A Homework Assignment 4
 Due Tuesday, February 27, 2024

1. Show that if $\sum a_{n}$ and $\sum b_{n}$ are convergent series of nonnegative numbers, then $\sum \sqrt{a_{n} b_{n}}$ converges.
2. Find a series $\sum a_{n}$ which diverges by the Root Test but for which the Ratio Test gives no information.
3. Let $\left(a_{n}\right)$ be a sequence of nonzero real numbers such that the sequence $\left(\frac{a_{n+1}}{a_{n}}\right)$ is a constant sequence. Show that $\sum a_{n}$ is a geometric series.
4. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence such that $\liminf \left|a_{n}\right|=0$. Prove there is a subsequence $\left(a_{n_{k}}\right)_{k \in \mathbb{N}}$ such that $\sum_{k=1}^{\infty} a_{n_{k}}$ converges.
5. (a) Exhibit an example of a divergent series $\sum a_{n}$ for which $\sum a_{n}^{2}$ converges.
(b) Show that if $\sum a_{n}$ is a convergent series of nonnegative terms, then $\sum a_{n}^{2}$ also converges.
(c) Exhibit an example of a convergent series $\sum a_{n}$ for which $\sum a_{n}^{2}$ diverges.
6. Prove that if $\left(a_{n}\right)$ is a decreasing sequence of positive real numbers and if $\sum a_{n}$ converges, then $\lim _{n \rightarrow \infty} n a_{n}=0$
7. Suppose that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at the point x_{0} and that $f\left(x_{0}\right)>0$. Show that there is an interval $I_{n}=\left(x_{0}-\frac{1}{n}, x_{0}+\frac{1}{n}\right)$ for some $n \in \mathbb{N}$ for which $f(x)>0$ for every $x \in I_{n}$.
8. A function $f: D \rightarrow \mathbb{R}$ is said to be Lipschitz provided that there is a number $C \geq 0$ with

$$
|f(u)-f(v)| \leq C|u-v| \quad \text { for all } u \text { and } v \text { in } D .
$$

Show that a Lipschitz function is continuous.
9. Suppose the function $\lambda: \mathbb{R} \rightarrow \mathbb{R}$ has the the property that $\lambda(u+v)=\lambda(u)+\lambda(v)$ for all u, v.
(a) Define the number m by $m:=\lambda(1)$. Show that $\lambda(x)=m x$ for all rational numbers x.
(b) Show that if λ is continuous, then $\lambda(x)=m x$ for all $x \in \mathbb{R}$.
10. Let f be a real-valued function whose domain is a subset of \mathbb{R}.

Show that f is continuous at $x_{0} \in \operatorname{dom}(f)$ if and only if for every sequence $\left(x_{n}\right)$ in $\operatorname{dom}(f) \backslash\left\{x_{0}\right\}$ converging to x_{0}, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)$.

