Math 142A Homework Assignment 4 Due Tuesday, February 27, 2024

- 1. Show that if $\sum a_n$ and $\sum b_n$ are convergent series of nonnegative numbers, then $\sum \sqrt{a_n b_n}$ converges.
- 2. Find a series $\sum a_n$ which diverges by the Root Test but for which the Ratio Test gives no information.
- 3. Let (a_n) be a sequence of nonzero real numbers such that the sequence $\left(\frac{a_{n+1}}{a_n}\right)$ is a constant sequence. Show that $\sum a_n$ is a geometric series.
- 4. Let $(a_n)_{n \in \mathbb{N}}$ be a sequence such that $\liminf |a_n| = 0$. Prove there is a subsequence $(a_{n_k})_{k \in \mathbb{N}}$ such that $\sum_{k=1}^{\infty} a_{n_k}$ converges.
- 5. (a) Exhibit an example of a divergent series $\sum a_n$ for which $\sum a_n^2$ converges.
 - (b) Show that if $\sum a_n$ is a convergent series of nonnegative terms, then $\sum a_n^2$ also converges.
 - (c) Exhibit an example of a convergent series $\sum a_n$ for which $\sum a_n^2$ diverges.
- 6. Prove that if (a_n) is a decreasing sequence of positive real numbers and if $\sum a_n$ converges, then $\lim_{n \to \infty} na_n = 0$
- 7. Suppose that the function $f : \mathbb{R} \to \mathbb{R}$ is continuous at the point x_0 and that $f(x_0) > 0$. Show that there is an interval $I_n = (x_0 - \frac{1}{n}, x_0 + \frac{1}{n})$ for some $n \in \mathbb{N}$ for which f(x) > 0 for every $x \in I_n$.
- 8. A function $f: D \to \mathbb{R}$ is said to be *Lipschitz* provided that there is a number $C \ge 0$ with

 $|f(u) - f(v)| \le C |u - v|$ for all u and v in D.

Show that a Lipschitz function is continuous.

- 9. Suppose the function $\lambda : \mathbb{R} \to \mathbb{R}$ has the property that $\lambda(u+v) = \lambda(u) + \lambda(v)$ for all u, v.
 - (a) Define the number m by $m := \lambda(1)$. Show that $\lambda(x) = m x$ for all rational numbers x.
 - (b) Show that if λ is continuous, then $\lambda(x) = m x$ for all $x \in \mathbb{R}$.
- 10. Let f be a real-valued function whose domain is a subset of \mathbb{R} . Show that f is continuous at $x_0 \in \text{dom}(f)$ if and only if for every sequence (x_n) in $\text{dom}(f) \setminus \{x_0\}$ converging to x_0 , we have $\lim_{n \to \infty} f(x_n) = f(x_0)$.