Math 142A Homework Assignment 2
 Due Tuesday, January 30, 2024

1. Let $\left(t_{n}\right)$ be a bounded sequence; that is, there exists $M \geq 0$ such that $\left|t_{n}\right| \leq M$ for all n. Let $\left(s_{n}\right)$ be a sequence such that $\lim s_{n}=0$. Prove that $\lim \left(s_{n} t_{n}\right)=0$.
2. Consider three sequences $\left(a_{n}\right),\left(b_{n}\right)$, and $\left(s_{n}\right)$ such that $a_{n} \leq s_{n} \leq b_{n}$ for all n, and $\lim a_{n}=\lim b_{n}=s$. Prove that $\lim s_{n}=s$.
3. Suppose $\left(s_{n}\right)$ and $\left(t_{n}\right)$ are sequences such that $\left|s_{n}\right| \leq t_{n}$ for all n and $\lim t_{n}=0$. Prove that $\lim s_{n}=0$.
4. Suppose that $s_{n} \neq 0$ for every index n and that the limit $L=\lim \left|\frac{s_{n+1}}{s_{n}}\right|$ is defined.
(a) Show that if $L<1$, then $\lim s_{n}=0$.
(b) Show that if $L>1$, then $\lim \left|s_{n}\right|=+\infty$.
(See Exercise 9.12 in your text for a hint.)
5. Let $s_{1}=1$, and for $n \geq 1$, let $s_{n+1}=\sqrt{s_{n}+1}$. It turns out that $\left(s_{n}\right)$ converges. Assume this fact and show that limit $\lim s_{n}=\frac{1}{2}(1+\sqrt{5})$.
6. Let $x_{1}=1$ and $x_{n+1}=3 x_{n}^{2}$ for $n \geq 1$.
(a) Show that if $a=\lim x_{n}$, then $a=\frac{1}{3}$ or $a=0$.
(b) Does $\lim x_{n}$ exist? Justify your answer.
(c) Explain the apparent contradiction between the result in part (a) and part (b).
7. Show that $\lim _{n \rightarrow \infty} \frac{a^{n}}{n!}=0$ for all $a \in \mathbb{R}$.
8. (a) Verify that $1+a+a^{2}+\cdots+a^{n}=\frac{1-a^{n+1}}{1-a}$ for $a \neq 1$.
(b) Determine $\lim _{n \rightarrow \infty}\left(1+a+a^{2}+\cdots+a^{n}\right)$ for $|a|<1$.
(c) What is $\lim _{n \rightarrow \infty}\left(1+a+a^{2}+\cdots+a^{n}\right)$ for $a \geq 1$?
9. Let S be a bounded nonempty subset of \mathbb{R} such that $\sup (S) \notin S$. Show that there is a sequence $\left(s_{n}\right)$ of points in S such that $\lim s_{n}=\sup (S)$.
10. Let $\left(s_{n}\right)$ be a sequence such that $\left|s_{n+1}-s_{n}\right|<2^{-n}$ for all $n \in \mathbb{N}$.
(a) Prove that $\left(s_{n}\right)$ is a Cauchy sequence and, therefore, a convergent sequence.
(b) Is $\left(s_{n}\right)$ a Cauchy sequence if we only assume that $\left|s_{n+1}-s_{n}\right|<\frac{1}{n}$ for all $n \in \mathbb{N}$?
