Math 109: A List of Supplementary Exercises

1. Let b be a nonzero integer and let a, q and r be integers such that $a=b q+r$. Prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
2. Let n be a positive integer and let a be an integer coprime to n. Prove that for every integer b, there is an integer x such that $a x-b$ is divisible by n.
3. Let a, b and c be integers such that $\operatorname{gcd}(a, c)=\operatorname{gcd}(b, c)=1$. Prove that $\operatorname{gcd}(a b, c)=1$.
4. Let a, b and c be integers such that a and b are coprime and c divides $a+b$. Prove that $\operatorname{gcd}(a, c)=\operatorname{gcd}(b, c)=1$.
5. Show that $\operatorname{gcd}(5 n+2,12 n+5)=1$ for every integer n.
6. Let p and q be integers such that 3 divides $p^{2}+q^{2}$. Prove that 3 divides p and 3 divides q.
7. Find a positive integer n and members $[a]$ and $[b]$ of \mathbb{Z}_{n} such that $[a] \cdot[b]=[0]$ but $[a] \neq[0]$ and $[b] \neq[0]$.
8. Prove that the nonzero element $[a]$ of \mathbb{Z}_{n} has a multiplicative inverse in \mathbb{Z}_{n} if and only if n and a are coprime.
9. Define \simeq on \mathbb{R} by $x \simeq y$ if and only if $x-y \in \mathbb{Z}$.
(a) Prove that \simeq is an equivalence relation on \mathbb{R}.
(b) Which real numbers belong to $[-17]$?
(c) Characterize the partition Π on \mathbb{R} corresponding to \simeq.
10. Define \sim on the set $M_{n \times n}$ of all $n \times n$ matrices by $A \sim B$ if and only if there is an invertible matrix $P \in M_{n \times n}$ such that $B=P^{-1} A P$. Prove that \sim is an equivalence relation on $M_{n \times n}$.
11. For each real number b, let $A_{b}=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}|y=|x+b|\}\right.$, and let $\mathcal{A}=\left\{A_{b} \mid b \in \mathbb{R}\right\}$. Is \mathcal{A} a partition of $\mathbb{R} \times \mathbb{R}$? Justify your answer.
12. For each real number b, let $A_{b}=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}|y=|x|+b\}\right.$, and let $\mathcal{A}=\left\{A_{b} \mid b \in \mathbb{R}\right\}$. Is \mathcal{A} a partition of $\mathbb{R} \times \mathbb{R}$? Justify your answer.
13. Let $f: A \rightarrow A$ be a function from a set A to itself.
(a) Given that A is finite, prove that f is injective if and only if f is surjective.
(b) Let $A=\mathbb{Z}^{+}$. Find a function $f_{1}: A \rightarrow A$ that is injective but not surjective, and find a function $f_{2}: A \rightarrow A$ that is surjective but not injective.
14. Since $(0,1)$ and $[0,1]$ have the same cardinality, there must be a bijection $\sigma:(0,1) \rightarrow[0,1]$ between them. Find an explicit formula for one.
15. Let $\mathbb{N}=\{n \in \mathbb{Z} \mid n \geq 0\}$. (\mathbb{N} is often called the set of natural numbers.) Let $\mathcal{F}(\mathbb{N})$ be the collection of all finite subsets of \mathbb{N}. Find an explicit bijection $\sigma: \mathcal{F}(\mathbb{N}) \rightarrow \mathbb{N}$. (Hint: Think about binary representation of integers.)
