Math 109: A List of Supplementary Exercises

- 1. Let b be a nonzero integer and let a, q and r be integers such that a = bq + r. Prove that gcd(a,b) = gcd(b,r).
- 2. Let n be a positive integer and let a be an integer coprime to n. Prove that for every integer b, there is an integer x such that ax b is divisible by n.
- 3. Let a, b and c be integers such that gcd(a, c) = gcd(b, c) = 1. Prove that gcd(ab, c) = 1.
- 4. Let a, b and c be integers such that a and b are coprime and c divides a + b. Prove that gcd(a, c) = gcd(b, c) = 1.
- 5. Show that gcd(5n+2, 12n+5) = 1 for every integer n.
- 6. Let p and q be integers such that 3 divides $p^2 + q^2$. Prove that 3 divides p and 3 divides q.
- 7. Find a positive integer n and members [a] and [b] of \mathbb{Z}_n such that $[a] \cdot [b] = [0]$ but $[a] \neq [0]$ and $[b] \neq [0]$.
- 8. Prove that the nonzero element [a] of \mathbb{Z}_n has a multiplicative inverse in \mathbb{Z}_n if and only if n and a are coprime.
- 9. Define \simeq on \mathbb{R} by $x \simeq y$ if and only if $x y \in \mathbb{Z}$.
 - (a) Prove that \simeq is an equivalence relation on \mathbb{R} .
 - (b) Which real numbers belong to [-17]?
 - (c) Characterize the partition Π on \mathbb{R} corresponding to \simeq .
- 10. Define ~ on the set $M_{n \times n}$ of all $n \times n$ matrices by $A \sim B$ if and only if there is an invertible matrix $P \in M_{n \times n}$ such that $B = P^{-1}AP$. Prove that ~ is an equivalence relation on $M_{n \times n}$.
- 11. For each real number b, let $A_b = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = |x + b|\}$, and let $\mathcal{A} = \{A_b \mid b \in \mathbb{R}\}$. Is \mathcal{A} a partition of $\mathbb{R} \times \mathbb{R}$? Justify your answer.
- 12. For each real number b, let $A_b = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = |x| + b\}$, and let $\mathcal{A} = \{A_b \mid b \in \mathbb{R}\}$. Is \mathcal{A} a partition of $\mathbb{R} \times \mathbb{R}$? Justify your answer.
- 13. Let $f: A \to A$ be a function from a set A to itself.
 - (a) Given that A is finite, prove that f is injective if and only if f is surjective.
 - (b) Let $A = \mathbb{Z}^+$. Find a function $f_1 : A \to A$ that is injective but not surjective, and find a function $f_2 : A \to A$ that is surjective but not injective.
- 14. Since (0,1) and [0,1] have the same cardinality, there must be a bijection $\sigma : (0,1) \to [0,1]$ between them. Find an explicit formula for one.
- 15. Let $\mathbb{N} = \{n \in \mathbb{Z} \mid n \geq 0\}$. (\mathbb{N} is often called the set of natural numbers.) Let $\mathcal{F}(\mathbb{N})$ be the collection of all *finite* subsets of \mathbb{N} . Find an explicit bijection $\sigma : \mathcal{F}(\mathbb{N}) \to \mathbb{N}$. (Hint: Think about binary representation of integers.)