1. Let \(b \) be a nonzero integer and let \(a, q \) and \(r \) be integers such that \(a = bq + r \). Prove that \(\gcd(a, b) = \gcd(b, r) \).

2. Let \(n \) be a positive integer and let \(a \) be an integer coprime to \(n \). Prove that for every integer \(b \), there is an integer \(x \) such that \(ax \) is divisible by \(n \).

3. Let \(a, b \) and \(c \) be integers such that \(\gcd(a, c) = \gcd(b, c) = 1 \). Prove that \(\gcd(ab, c) = 1 \).

4. Let \(a, b \) and \(c \) be integers such that \(a \) and \(b \) are coprime and \(c \) divides \(a + b \). Prove that \(\gcd(a, c) = \gcd(b, c) = 1 \).

5. Show that \(\gcd(5n + 2, 12n + 5) = 1 \) for every integer \(n \).

6. Let \(p \) and \(q \) be integers such that 3 divides \(p^2 + q^2 \). Prove that 3 divides \(p \) and 3 divides \(q \).

7. Find a positive integer \(n \) and members \([a] \) and \([b] \) of \(\mathbb{Z}_n \) such that \([a] \cdot [b] = [0] \) but \([a] \neq [0] \) and \([b] \neq [0] \).

8. Prove that the nonzero element \([a] \) of \(\mathbb{Z}_n \) has a multiplicative inverse in \(\mathbb{Z}_n \) if and only if \(n \) and \(a \) are coprime.

9. Define \(\simeq \) on \(\mathbb{R} \) by \(x \simeq y \) if and only if \(x - y \) is an integer.
 (a) Prove that \(\simeq \) is an equivalence relation on \(\mathbb{R} \).
 (b) Which real numbers belong to \([−17] \)?
 (c) Characterize the partition \(\Pi \) on \(\mathbb{R} \) corresponding to \(\simeq \).

10. Define \(\sim \) on the set \(M_{n \times n} \) of all \(n \times n \) matrices by \(A \sim B \) if and only if there is an invertible matrix \(P \in M_{n \times n} \) such that \(B = P^{-1}AP \). Prove that \(\sim \) is an equivalence relation on \(M_{n \times n} \).

11. For each real number \(b \), let \(A_b = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = |x + b| \} \), and let \(\mathcal{A} = \{A_b \mid b \in \mathbb{R} \} \). Is \(\mathcal{A} \) a partition of \(\mathbb{R} \times \mathbb{R} \)? Justify your answer.

12. For each real number \(b \), let \(A_b = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = |x| + b \} \), and let \(\mathcal{A} = \{A_b \mid b \in \mathbb{R} \} \). Is \(\mathcal{A} \) a partition of \(\mathbb{R} \times \mathbb{R} \)? Justify your answer.

13. Let \(f : A \to A \) be a function from a set \(A \) to itself.
 (a) Given that \(A \) is finite, prove that \(f \) is injective if and only if \(f \) is surjective.
 (b) Let \(A = \mathbb{Z}^+ \). Find a function \(f_1 : A \to A \) that is injective but not surjective, and find a function \(f_2 : A \to A \) that is surjective but not injective.

14. Since \((0, 1)\) and \([0, 1]\) have the same cardinality, there must be a bijection \(\sigma : (0, 1) \to [0, 1] \) between them. Find an explicit formula for one.

15. Let \(\mathbb{N} = \{n \in \mathbb{Z} \mid n \geq 0\} \). (\(\mathbb{N} \) is often called the set of natural numbers.) Let \(\mathcal{F}(\mathbb{N}) \) be the collection of all finite subsets of \(\mathbb{N} \). Find an explicit bijection \(\sigma : \mathcal{F}(\mathbb{N}) \to \mathbb{N} \). (Hint: Think about binary representation of integers.)