
Packages in the ‘graphics’ bundle

D. P. Carlisle

1998/05/27

Contents

1 Introduction 2

2 Driver support 2

3 Colour 3
3.1 Package Options . 3
3.2 Defining Colours . 4
3.3 Using Colours . 4
3.4 Named Colours . 5
3.5 Page Colour . 6
3.6 Box Backgrounds . 6
3.7 Possible Problems . 6

4 The Graphics packages 7
4.1 Package Options . 7
4.2 Rotation . 8
4.3 Scaling . 8
4.4 Including Graphics Files . 9
4.5 Other commands in the graphics package 13
4.6 Global setting of keys . 15
4.7 Compatibility between graphics and graphicx 15

5 Remaining packages in the graphics bundle 15
5.1 Epsfig . 15
5.2 Trig . 16
5.3 Keyval . 16
5.4 Pstcol . 16
5.5 Lscape . 16

1

1 Introduction

This document serves as a user-manual for the packages color, graphics, and
graphicx. Further documentation may be obtained by processing the source
(dtx) files of the individual packages.

2 Driver support

All these packages rely on features that are not in TEX itself. These features
must be supplied by the ‘driver’ used to print the dvi file. Unfortunately not
all drivers support the same features, and even the internal method of accessing
these extensions varies between drivers. Consequently all these packages take
options such as ‘dvips’ to specify which driver is being used.

You should to set up a site default for these options, for the driver that you
normally use. Suppose that you wish for the color package to always default
to use specials for the PostScript driver, dvipsone. In that case create a file
color.cfg containing the line:
\ExecuteOptions{dvipsone}

Normally you will want an identical file graphics.cfg to set a similar default
for the graphics packages.

The following driver options are declared in the packages.

dvips, xdvi, dvipdf, pdftex, dvipsone, dviwindo, emtex,
dviwin, pctexps, pctexwin, pctexhp, pctex32, truetex, tcidvi,
vtex, oztex, textures

If you use a driver that is not in the list above you may add an option for
that driver by putting the appropriate \DeclareOption line into graphics.cfg

and color.cfg, before making it the default option with \ExecuteOptions, as
described above.

For example to add the option ‘dvi2ps’ for the original Unix dvi to ps driver,
and to make that the default, you just need configuration files looking like:

\DeclareOption{dvi2ps}{\def\Gin@driver{dvi2ps.def}}

\ExecuteOptions{dvi2ps}

There is a suitable dvi2ps.def file in the standard distribution. It is not enabled
by default as it is not well tested as the driver is no longer available to me. The
following driver files are similarly distributed but not enabled by default.

dvi2ps, dvialw, dvilaser, dvitops, psprint, pubps, ln

2

Most of these driver files are generated from the source file drivers.dtx. That
file has the sources for other versions (for example older versions of dvips and
textures) which are not generated by default.

If you use a driver that is not covered by any of these possibilities, you may try
to write a .def file by analogy with one of the existing ones, and then specify
a suitable option in graphics.cfg and color.cfg, as for the above example of
dvi2ps.

3 Colour

The colour support is built around the idea of a system of Colour Models. The
Colour models supported by a driver vary, but typically include

rgb Red Green Blue: A comma separated list of three numbers between 0
and 1, giving the components of the colour.

cmyk Cyan Magenta Yellow [K]Black: A comma separated list of four numbers
between 0 and 1, giving the components of the colour according to the
additive model used in most printers.

gray Grey scale: a single number between 0 and 1.

named Colours accessed by name, e.g. ‘JungleGreen’. Not all drivers support
this model. The names must either be ‘known’ to the driver or added using
commands described in color.dtx. Some drivers support an extended
form of the named model in which an ‘intensity’ of the colour may also be
specified, so ‘JungleGreen, 0.5’ would denote that colour at half strength.

Note that the named model is really just given as an example of a colour model
that takes names rather than a numeric specification. Other options may be
provided locally that provide different colour models, eg pantone (An industry
standard set of colours), x11 (Colour names from the X Window System),
etc. The standard distribution does not currently have such models, but the
named model could be used as an example of how to define a new colour model.
The names used in the named model are those suggested by Jim Hafner in
his colordvi and foiltex packages, and implemented originally in the color.pro

header file for the dvips driver.

3.1 Package Options

Most of the options to the color package just specify a driver, e.g., dvips, as
discussed in section 2.

One special option for the color package that is of interest is monochrome. If
this option is selected the colour commands are all disabled so that they do not

3

generate errors, but do not generate colour either. This is useful if previewing
with a previewer that can not produce colour.

Three other package options control the use of the named model. The dvips

driver (by default) pre-defines 68 colour names. The dvips option normally
makes these names available in the named colour model. If you do not want
these names to be declared in this model (Saving TEX some memory) you may
give the nodvipsnames option. Conversely, if you are using another driver, you
may wish to add these names to the named model for that driver (especially if
you are processing a document originally produced on dvips). In this case you
could use the dvipsnames option. Lastly the usenames option makes all names
in the named model directly available, as described below.

3.2 Defining Colours

The colours black, white, red, green, blue, cyan, magenta, yellow should be
predefined, but should you wish to mix your own colours use the \definecolor

command.

\definecolor{〈name〉}{〈model〉}{〈colour specification〉}

This defines 〈name〉 as a colour which can be used in later colour commands.
For example

\definecolor{light-blue}{rgb}{0.8,0.85,1}

\definecolor{mygrey}{gray}{0.75}

Now light-blue and mygrey may be used in addition to the predefined colours
above.

3.3 Using Colours

3.3.1 Using predefined colours

The syntax for colour changes is designed to mimic font changes. The basic
syntax is:

\color{〈name〉}

This is a declaration, like \bfseries It changes the current colour to 〈name〉
until the end of the current group or environment.

An alternative command syntax is to use a command form that takes the text
to be coloured as an argument. This is similar to the font commands such as
\textbf:

4

\textcolor{〈name〉}{〈text〉}

So the above is essentially equivalent to {\color{〈name〉}text}.

3.3.2 Using colour specifications directly

\color[〈model〉]{〈specification〉}
\textcolor[〈model〉]{〈specification〉}{〈text〉}

Normally one would predeclare all the colours used in a package, or in the doc-
ument preamble, but sometimes it is convenient to directly use a colour without
naming it first. To achieve this \color (and all the other colour commands)
take an optional argument specifying the model. If this is used then the manda-
tory argument takes a 〈colour specification〉 instead of a 〈name〉. For example:
\color[rgb]{1,0.2,0.3}

would directly select that colour.

This is particularly useful for accessing the named model:
\color[named]{BrickRed} selects the dvips colour BrickRed.

Rather than repeatedly use [named] you may use \definecolor to provide
convenient aliases:
\definecolor{myred}{named}{WildStrawberry} . . . \color{myred} . . .

Alternatively if you are happy to use the existing names from the named model,
you may use the usenames package option, which effectively calls \definecolor
on every colour in the named model, thus allowing \color{WildStrawberry}

in addition to \color[named]{WildStrawbery}.

3.4 Named Colours

Using the named colour model has certain advantages over using other colour
models.

Firstly as the dvi file contains a request for a colour by name, the actual mix
of primary colours used to obtain the requested colour can be tuned to the
characteristics of a particular printer. In the dvips driver the meanings of the
colour names are defined in the header file color.pro. Users are encouraged to
produce different versions of this file for any printers they use. By this means
the same dvi file should produce colours of similar appearance when printed on
printers with different colour characteristics.

Secondly, apart from the so called ‘process colours’ that are produced by mixing
primary colours during the print process, one may want to use ‘spot’ or ‘custom’
colours. Here a particular colour name does not refer to a mix of primaries, but
to a particular ink. The parts of the document using this colour will be printed
separately using this named ink colour.

5

3.5 Page Colour

\pagecolor{〈name〉}
\pagecolor[〈model〉]{〈specification〉}

The background colour of the whole page can be set using \pagecolor. This
takes the same argument forms as \color but sets the background colour for
the current and all subsequent pages. It is a global declaration, so you need to
use \pagecolor{white} to ‘get back to normal’.

3.6 Box Backgrounds

Two commands similar to \fbox produce boxes with the backgrounds shaded
an appropriate colour.

\colorbox{〈name〉}{〈text〉}
\colorbox[〈model〉]{〈specification〉}{〈text〉}
\fcolorbox{〈name1 〉}{〈name2 〉}{〈text〉}
\fcolorbox[〈model〉]{〈specification1 〉}{〈specification2 〉}{〈text〉}

The former produces a box coloured with name like this . The latter is similar
but puts a frame of colour name1 around the box coloured name2.

These commands use the \fbox parameters \fboxrule and \fboxsep to deter-
mine the thickness of the rule, and the size of the shaded area.

3.7 Possible Problems

TEX was not designed with colour in mind, and producing colours requires a
lot of help from the driver program. Thus, depending on the driver, some or all
features of the color package may not be available.

Some drivers do not maintain a special ‘colour stack’. These drivers are likely to
get confused if you nest colour changes, or use colours in floating environments.

Some drivers do not maintain colours over a page break, so that if the page
breaks in the middle of a coloured paragraph, the last part of the text will
incorrectly be printed in black.

There is a different type of problem that will occur for all drivers. Due to certain
technical difficulties1, it is possible that at points where the colour changes, the
spacing is affected. For this reason the monochrome option does not completely
disable the colour commands, it redefines them to write to the log file. This

1At least two causes: 1) The presence of a \special 〈whatsit〉 prevents \addvspace ‘seeing’
space on the current vertical list, so causing it to incorrectly add extra vertical space. 2) A
〈whatsit〉 as the first item in a \vtop moves the reference point of the box.

6

will have the same effects on spacing, so you can produce monochrome drafts
of your document, at least knowing that the final spacing is being shown.

4 The Graphics packages

There are two graphics packages:

graphics The ‘standard’ graphics package.

graphicx The ‘extended’ or ‘enhanced’ graphics package.

The two differ only in the format of optional arguments for the commands
defined. The command names, and the mandatory arguments are the same for
the two packages.

4.1 Package Options

As discussed in section 2, the graphics packages share the same ‘driver’ options
as the color package. As for colour you should set up a site-default in a file,
graphics.cfg, containing the line (for dvips):
\ExecuteOptions{dvips}

The graphics packages have some other options for controlling how many of the
features to enable:

draft suppress all the ‘special’ features. In particular graphics files are not
included (but they are still read for size info) just the filename is printed
in a box of the correct size.

final The opposite of draft. Useful to over-ride a global draft option specified
in the \documentclass command.

hiderotate Do not show rotated text (presumably because the previewer can
not rotate).

hidescale Do not show scaled text (presumably because the previewer can not
scale).

hiresbb Look for size specifications in %%HiResBoundingBox lines rather than
standard %%BoundingBox lines. New feature

1996/10/29

7

4.2 Rotation

graphics: \rotatebox{〈angle〉}{〈text〉}
graphicx: \rotatebox[〈key val list〉]{〈angle〉}{〈text〉}

This puts text in a box, like \mbox, but rotates the box through angle degrees,

like this
.

The standard version always rotates around the reference point of the box, but
the keyval version takes the following keys:

origin=〈label〉
x=〈dimen〉
y=〈dimen〉
units=〈number〉

So you may specify both x and y, which give the coordinate of the centre of
rotation relative to the reference point of the box, eg [x=2mm, y=5mm]. Alterna-
tively, for the most common points, one may use origin with a label containing
one or two of the following: lrctbB (B denotes the baseline, as for PSTricks).
For example, compare a default rotation of 180◦ . . . LikeThis . . . to the effects

gained by using the origin key:
[origin = c] rotates about the centre of the box,. . .

LikeThis
. . .

[origin = tr] rotates about the top right hand corner. . .

LikeThis

. . .

The units key allows a change from the default units of degrees anti-clockwise.
Give the number of units in one full anti-clockwise rotation. For example:
[units = -360] specifies degrees clockwise.
[units= 6.283185] specifies radians.

4.3 Scaling

4.3.1 Scaling by scale factor

\scalebox{〈h-scale〉}[〈v-scale〉]{〈text〉}

Again this is basically like \mbox but scales the text. If v-scale is not specified
it defaults to h-scale. If it is specified the text is distorted as the horizontal and
vertical stretches are different, Like This.

\reflectbox{〈text〉}

An abbreviation for \scalebox{-1}[1]{〈text〉}.

8

4.3.2 Scaling to a requested size

\resizebox*{〈h-length〉}{〈v-length〉}{〈text〉}

Scale text so that the width is h-length. If ! is used as either length argument,
the other argument is used to determine a scale factor that is used in both
directions. Normally v-length refers to the height of the box, but in the star
form, it refers to the ‘height + depth’. As normal for LATEX2ε box length
arguments, \height, \width, \totalheight, \depth may be used to refer to
the original size of the box.

\resizebox{1in}{\height}{Some text}: Some text

\resizebox{1in}{!}{Some text}: Some text

4.4 Including Graphics Files

The functions for graphics inclusion try to give the same user syntax for includ-
ing any kind of graphics file that can be understood by the driver. This relies
on the file having an extension that identifies the file type. The ‘driver options’
will define a collection of file extensions that the driver can handle, although
this list may be extended using the declarations described below.

If the file’s extension is unknown to the driver, the system may try a default
file type. The PostScript driver files set this default to be eps (PostScript), but
this behaviour may be customised if other defaults are required.

graphics: \includegraphics*[〈llx,lly〉][〈urx,ury〉]{〈file〉}
graphicx: \includegraphics*[〈key val list〉]{〈file〉}

Include a graphics file.

If * is present, then the graphic is ‘clipped’ to the size specified. If * is omitted,
then any part of the graphic that is outside the specified ‘bounding box’ will
over-print the surrounding text.

If the optional arguments are omitted, then the size of the graphic will be
determined by reading an external file as described below.

graphics version If [〈urx,ury〉] is present, then it should specify the coordi-
nates of the top right corner of the image, as a pair of TEX dimensions. If the
units are omitted they default to bp. So [1in,1in] and [72,72] are equiva-
lent. If only one optional argument appears, the lower left corner of the image
is assumed to be at [0,0]. Otherwise [〈llx,lly〉] may be used to specify the
coordinates of this point.

9

graphicx version Here the star form is just for compatibility with the standard
version. It just adds clip to the list of keys specified. (Also, for increased
compatibility, if two optional arguments are used, the ‘standard’ version of
\includegraphics is always used, even if the graphicx package is loaded.)

The allowed keys are listed below.

bb The argument should be four dimensions, separated by spaces. These denote
the ‘Bounding Box’ of the printed region within the file.

bbllx,bblly,bburx,bbury Set the bounding box. Mainly for compatibility
with older packages. Specifying bbllx=a,bblly=b,bburx=c,bbury=d is
equivalent to specifying bb = a b c d.

natwidth,natheight Again an alternative to bb. natheight=h,natwidth=w

is equivalent to bb = 0 0 h w.

hiresbb Boolean valued key. If set to true (just specifying hiresbb is equiva- New feature
1996/10/29lent to hiresbb=true) then TEX will look for %%HiResBoundingBox lines

rather than %%BoundingBox. It may be set to false to overrule a default
setting of true set by the hiresbb package option.

viewport The viewport key takes four arguments, just like bb. However New feature
1995/06/01in this case the values are taken relative to the origin specified by the

bounding box in the file. So to ‘view’ the 1in square in the bottom left
hand corner of the area specified by the bounding box, use the argument
viewport=0 0 72 72.

trim Similar to viewport, but here the four lengths specify the amount to New feature
1995/06/01remove or add to each side. trim= 1 2 3 4 ‘crops’ the picture by 1bp at

the left, 2bp at the bottom, 3bp on the right and 4bp at the top.

angle Rotation angle.

origin Origin for rotation. See the documentation of \rotatebox. New feature
1995/09/28

width Required width. The graphic is scaled to this width.

height Required height. The graphic is scaled to this height.

totalheight Specify the total height (height + depth) of the figure. This will New feature
1995/06/01differ from the ‘height’ if rotation has occurred. In particular if the figure

has been rotated by −90◦ then it will have zero height but large depth.

keepaspectratio Boolean valued key like ‘clip’. If set to true then specifying New feature
1995/09/27both ‘width’ and ‘height’ (or ‘totalheight’) does not distort the figure but

scales such that neither of the specified dimensions is exceeded.

scale Scale factor.

10

clip Either ‘true’ or ‘false’ (or no value, which is equivalent to ‘true’). Clip the
graphic to the bounding box.

draft a boolean valued key, like ‘clip’. Locally switches to draft mode.

type Specify the graphics type.

ext Specify the file extension. This should only be used in conjunction with
type.

read Specify the file extension of the ‘read file’. This should only be used in
conjunction with type.

command Specify any command to be applied to the file. This should only be
used in conjunction with type.

For the keys specifying the original size (i.e,, the bounding box, trim and view-
port keys) the units can be omitted, in which case bp (i.e., PostScript points)
are assumed.

The first seven keys specify the original size of the image. This size needs to
be specified in the case that the file can not be read by TEX, or it contains an
incorrect size ‘BoundingBox’ specification.

bbllx. . . \bbury are mainly for compatibility for older packages.
bbllx=a, bblly=b, bburx=c, bbury=d

is equivalent to
bb = a b c d.

natheight and natwidth are just shorthands for setting the lower left coordi-
nate to 0 0 and the upper right coordinate to the specified width and height.

The next few keys specify any scaling or rotation to be applied to the image. To
get these effects using the standard package, the \includegraphics call must
be placed inside the argument of a \rotatebox or \scalebox command.

The keys are read left-to-right, so [angle=90, height=1in] means rotate by
90 degrees, and then scale to a height of 1in. [height=1in, angle=90] would
result in a final width of 1in.

If the calc package is also loaded the lengths may use calc syntax, for instance
to specify a width of 2 cm less than the text width: [width=\textwidth-2cm].

TEX leaves the space specified either in the file, or in the optional arguments.
If any part of the image is actually outside this area, it will by default overprint
the surrounding text. If the star form is used, or clip specified, any part of the
image outside this area will not be printed.

The last four keys suppress the parsing of the filename. If they are used, the
main file argument should not have the file extension. They correspond to the
arguments of \DeclareGraphicsRule described below.

To see the effect that the various options have consider the file a.ps. This file
contains the bounding box specification

11

%%BoundingBox:100 100 172 172

That is, the printed region consists of a one-inch square, 100 pt in from the
bottom and left hand edges of the paper.

In all the following examples the input will be of the form

left---\fbox{\includegraphics{a}}---right

With different options supplied to \includegraphics.

No optional argument.

left—A —right

graphics: \scalebox{0.5}{\includegraphics{a}}

graphicx: \includegraphics[scale=.5]{a}

left— A —right

graphics: \includegraphics[115,110][135,145]{a}}

graphicx: \includegraphics[bb= 115 110 135 145]{a}

left—A—right

graphics: \includegraphics*[115,110][135,145]{a}}

graphicx: \includegraphics[bb= 115 110 135 145,clip]{a}

left—A—right

graphics: \scalebox{0.5}{\includegraphics{a}} and draft option.
graphicx: \includegraphics[scale=.5, draft]{a}

left—

a.ps

—right

12

4.5 Other commands in the graphics package

\graphicspath{〈dir-list〉}

This optional declaration may be used to specify a list of directories in which to
search for graphics files. The format is the same as for the LATEX2ε primitive
\input@path. A list of directories, each in a {} group (even if there is only one
in the list). For example:
\graphicspath{{eps/}{tiff/}}

would cause the system to look in the subdirectories eps and tiff of the current
directory. This is unix syntax, on a Mac it would be:
\graphicspath{{:eps:}{:tiff:}}

Note the differing conventions, an initial : is needed on Macintosh systems to
denote the current folder, whereas on unix an initial / would denote the top
level ‘root’ directory.

The default setting of this path is \input@path that is: graphics files will be
found wherever TEX files are found.

\DeclareGraphicsExtensions{〈ext-list〉}

This specifies the behaviour of the system when no file extension is specified in New description
1994/12/01the argument to \includegraphics. {〈ext-list〉} should be a comma separated

list of file extensions. (White space is ignored between the entries.) A file name
is produced by appending one extension from the list. If a file is found, the
system acts as if that extension had been specified. If not, the next extension
in ext-list is tried.

Note that if the extension is not specified in the \includegraphics com-
mand, the graphics file must exist at the time LATEX is run, as the existence
of the file is used to determine which extension from the list to choose. How-
ever if a file extension is specified, e.g. \includegraphics{a.ps} instead of
\includegraphics{a}, then the graphics file need not exist at the time LATEX
is used. (In particular it may be created on the fly by the 〈command〉 specified
in the \DeclareGraphicsRule command described below.) LATEX does however
need to be able to determine the size of the image so this size must be specified
in arguments, or the ‘read file’ must exist at the time LATEX is used.

\DeclareGraphicsRule{〈ext〉}{〈type〉}{〈read-file〉}{〈command〉}

Any number of these declarations can be made. They determine how the system
behaves when a file with extension ext is specified. (The extension may be
specified explicitly or, if the argument to \includegraphics does not have
an extension, it may be a default extension from the ext-list specified with
\DeclareGraphicsExtensions.)

ext the file extension for which this rule applies. As a special case, ext may be

13

given as * to denote the default behaviour for all undeclared extensions (see the
example below).

type is the ‘type’ of file involved. All files of the same type will be input with the
same internal command (which must be defined in a ‘driver file’). For example
files with extensions ps, eps, ps.gz may all be classed as type eps.

read-file determines the extension of the file that should be read to determine
size information. It may be the same as ext but it may be different, for example
.ps.gz files are not readable easily by TEX, so you may want to put the bounding
box information in a separate file with extension .ps.bb. If read-file is empty,
{}, then the system will not try to locate an external file for size info, and the
size must be specified in the arguments of \includegraphics. If the driver file
specifies a procedure for reading size files for type, that will be used, otherwise
the procedure for reading eps files will be used. Thus the size of bitmap files
may be specified in a file with a PostScript style %%BoundingBox line, if no other
specific format is available.

As a special case * may be used to denote the same extension as the graphic
file. This is mainly of use in conjunction with using * as the extension, as in
that case the particular graphic extension is not known. For example

\DeclareGraphicsRule{*}{eps}{*}{}

This would declare a default rule, such that all unknown extensions would be
treated as EPS files, and the graphic file would be read for a BoundingBox
comment.

command is usually empty, but if non empty it is used in place of the filename
in the \special. Within this argument, #1 may be used to denote the filename.
Thus using the dvips driver, one may use
\DeclareGraphicsRule{.ps.gz}{eps}{.ps.bb}{‘zcat #1}

the final argument causes dvips to use the zcat command to unzip the file before
inserting it into the PostScript output.

Note that LATEX will find the graphics file by searching along TEXINPUTS (and
possibly other places, as specified with \graphicspath) however it may be that
the command you specify in this argument can not find such files unless they
are in the current directory. On some systems it may be possible to modify
the command so that it will find any files that LATEX can find. For example on
newer web2c TEX releases on unix, one may modify the above command so that
the last argument is:
{‘zcat ‘kpsewhich -n latex tex #1‘}

which incantation causes the kpsewhich program to find the file, by searching
along LATEX’s path, and then pass the full path name to the zcat program so
that it can uncompress the file. Any such uses are very system dependent, and
would best be placed in a graphics.cfg file, thus keeping the document itself
portable.

14

4.6 Global setting of keys

Most of the keyval keys used in the graphicx package may also be set using the
command \setkeys provided by the keyval package.

For instance, suppose you wanted all the files to be included in the current doc-
ument to be scaled to 75% of the width of the lines of text, then one could issue
the following command:
\setkeys{Gin}{width=0.75\textwidth}

Here ‘Gin’ is the name used for the keyval keys associated with ‘Graphics in-
clusion’. All following \includegraphics commands (within the same group
or environment) will act as if [width=0.75\textwidth] had been specified, in
addition to any other key settings actually given in the optional argument.

Similarly to make all \rotatebox arguments take an argument in radians, one
just needs to specify:
\setkeys{Grot}{units=6.28318}

4.7 Compatibility between graphics and graphicx

For a document author, there are not really any problems of compatibility be-
tween the two packages. You just choose the interface that you personally prefer,
and then use the appropriate package.

For a package or class writer the situation is slightly different. Suppose that
you are writing a letter class that needs to print a company logo as part of the
letterhead.

As the author of the class you may want to give the users the possibility of using
either interface in their letters (should they need to include any further graphics
into the letter body). In this case the class should load the graphics package (not
graphicx, as this would commit any users of the class to the keyval interface).
The logo should be included with \includegraphics either with no optional
argument (if the correct size information is in the file) or both optional arguments
otherwise. Do not use the one optional argument form, as the meaning of this
argument would change (and generate errors) if the user were to load graphicx
as well as your class.

5 Remaining packages in the graphics bundle

5.1 Epsfig

This is a small package essentially a ‘wrapper’ around the graphicx package,
defining a command \psfig which has the syntax
\psfig{file=xxx,...} rather than \includegraphics[...]{xxx}.
It also has a few more commands to make it slightly more compatible with the
old LATEX 2.09 style of the same name.

15

5.2 Trig

The trig package is not intended to be used directly in documents. It calculates
sine, cosine and tangent trigonometric functions. These are used to calculate
the space taken up by a rotated box. This package is also used by the fontinst
program which converts PostScript files to a form usable by TEX.

As well as being used as a LATEX package, the macros may be extracted with the
docstrip options plain,package. In this case the LATEX package declarations are
omitted from the file, and the macros may be directly used as part of another
macro file (they work with any format based on plain TEX.)

5.3 Keyval

The keyval package is intended to be used by other packages. It provides a
generic way of setting ‘keys’ as used by the graphicx package, and splitting up
the comma separated lists of 〈key〉 = 〈value〉 pairs.

Like the trig package, these macros may be extracted and used as part of another
macro file, based on plain TEX, as well as the standard use as a LATEX package.

5.4 Pstcol

PSTricks, by Timothy Van Zandt is an immensely powerful package that enables
a very full featured interface between PostScript and TEX. Unfortunately the
colour support in PSTricks is slightly incompatible with the colour mechanism
defined in the color package. The pstcol package is a (hopefully temporary)
package that modifies a very small number of internal PSTricks functions, to
remove this incompatibility. If pstricks is loaded via this package, you may use
any colours defined by color package commands within pstricks commands, and
vice versa.

5.5 Lscape

The lscape package requires and takes the same options as the graphics pack-
age. It defines a landscape environment within which page bodies are rotated
through 90 degrees. The page head and foot are not affected, they appear in
the standard (portrait) position.

16

