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The polar planimeter was invented in 1854 by
Jakob Amsler.
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A Polar Planimeter

In fact, the measuring wheel W can be placed
anywhere along the tracer arm T.
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A Small Planimeter Motion

The total wheel displacement from a tracing

operation is
∫
C ds+ w

∫
C dθ.

Since
∫
C dθ = 0 around a closed curve C, the

wheel displacement is
∫
C ds, which is indepen-

dent of the position w of the wheel.



W

(x, y)

T

P

C

D

(0, 0)

(a, b)

An Idealized Polar Planimeter

We will denote by Ω and ∂Ω the disk and circle
of radius P+T , respectively, centered at (0,0).
They represent the maximal region and bound-
ary curve accessible to the planimeter. We will
call a domain D whose closure is contained in
Ω an accessible domain.



Theorem (Green’s Theorem). Let D be a sim-

ply connected domain bounded by a simple

closed curve C. Let P (x, y) and Q(x, y) be C1

on a neighborhood of D ∪ C. Then,∫
C
P dx+Qdy =

∫∫
D

(
∂Q

∂x
−
∂P

∂y

)
dx dy.



Measuring wheel displacement: M =
∫
C
τ · dr.

τ = 1
T (− (y − b) , x− a) the positively-oriented

unit vector perpendicular to the tracer arm.

Thus, M =
1

T

∫
C
− (y − b) dx+ (x− a) dy.

In practice, planimeters are manufactured so

that positive wheel displacement corresponds

to a clockwise traversal of C, but we will stay

with the standard mathematical convention to

avoid confusion.



The coordinates (a, b) are functions of the co-

ordinates (x, y). Applying Green’s Theorem to

the line integral representing M yields

M =
1

T

∫∫
D

[
2−

(
∂a

∂x
+
∂b

∂y

)]
dx dy.

If ∂a
∂x + ∂b

∂y = 1 on D, it will follow that the

displacement M of the measuring wheel is

proportional to the area A(D) =
∫∫
D dx dy.



The coordinates (a, b) satisfy

a2 + b2 = P2

(x− a)2 + (y − b)2 = T2

where P and T are the length of the pole arm

and tracer arm, respectively. Thus, (a, b) sat-

isfy the following system of partial differential

equations:

(1) a
∂a

∂x
+ b

∂b

∂x
= 0 (2) a

∂a

∂y
+ b

∂b

∂y
= 0

(3) x
∂a

∂x
+ y

∂b

∂x
= x− a (4) x

∂a

∂y
+ y

∂b

∂y
= y − b



Treating this as a system of four linear equa-

tions in the four unknowns ∂a
∂x, ∂a

∂y, ∂b
∂x and ∂b

∂y,

we find that

∂a

∂x
= −

b(x− a)

ay − bx
∂a

∂y
= −

b(y − b)
ay − bx

∂b

∂x
=
a(x− a)

ay − bx
∂b

∂y
=
a(y − b)
ay − bx

Therefore,

∂a

∂x
+
∂b

∂y
=
ay − bx
ay − bx

= 1,

provided

(x, y) 6= λ(a, b) for any constant λ.

Note that (x, y) = λ(a, b) only if (x, y) ∈ ∂Ω or

(x, y) = (0,0).



This means that if D is an accessible domain

and (0,0) 6∈ D, then the planimeter vector field

τ = 1
T (− (y − b) , x− a) is continuously differ-

entiable on D ∪ C and it follows from Green’s

theorem that

M =
1

T

∫∫
D
dx dy =

1

T
A(D).



Green’s theorem cannot be applied directly when
the pole (0,0) is in the domain D. We first
consider the special case of the disk Ω of ra-
dius R = P + T centered at the pole (0,0).

w

P

T

M and A(Ω) can be computed directly:

MΩ = 2π(P + w)

A(Ω) = π(P + T )2

Thus, A(Ω) = TMΩ+π
[
(P − T )2 + 2T (P − w)

]
.



Next, we consider a simple closed curve C in-

terior to Ω and enclosing (0,0).

By Green’s Theorem, the area between C and

∂Ω can be measured directly by the planime-

ter: A(Ω) − A(C) = T MΩ − T MC. Thus,

A(C) = T MC + π
[
(P − T )2 + 2T (P − w)

]
for

every simple closed curve C containing (0,0)

that is within the planimeter’s reach.



w < T ≤ P for most polar planimeters. Thus,

π
[
(P − T )2 + 2T (P − w)

]
> 0 and is the area

of a circle of radius
√

(P − T )2 + 2T (P − w).

The circle N of radius
√

(P − T )2 + 2T (P − w)

and centered at the pole (0,0) is called the

neutral circle since tracing this circle with the

planimeter would result in a total wheel dis-

placement MN = 0.

Most planimeter manufacturers would test each

instrument they produced to determine the area

of the neutral circle and would include this in-

formation with the instrument.



In a compensating polar planimeter, the pole

and tracer arms are separate pieces that fit

together via a ball-and-socket pivot joint.

The design allows the instrument to be set up

in two distinct orientations with the pivot joint

on either side of the line through the pole and

tracer point.

By taking readings with each orientation of

the pivot joint and averaging the results, er-

rors caused by misalignment of the measuring

wheel exactly cancel; thus, the design allows

one to compensate for this type of error.



τ = 1
T (− (y − b) , x− a) positively-oriented unit

vector perpendicular to the tracer arm

ρ = 1
T (x−a, y−b) positively-oriented (outward)

unit vector parallel to the tracer arm

If measuring wheel axis is misaligned by angle

ϑ, the unit vector w in direction of (+) wheel

displacement is no longer ⊥ to tracer arm:

w = cos(ϑ)τ + sin(ϑ)ρ.

The displacement M after tracing a curve C

enclosing a domain D is

M = cos(ϑ)
∫
C
τ · dr + sin(ϑ)

∫
C
ρ · dr

=
cos(ϑ)

T
A(D) + sin(ϑ)

∫
C
ρ · dr.

In other words,

A(D) = T sec(ϑ)M − T tan(ϑ)
∫
C
ρ · dr.



If the compensating polar planimeter is placed
in the two possible configurations, at any point
r = (x, y) on the curve C, there are two possi-
ble values for ρ: ρL and ρR (see figure).
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The sum of the unit vectors ρL and ρR is par-
allel to the vector r = (x, y).

The length of ρL + ρR depends only on the

distance r =
√
x2 + y2 between the pole (0,0)

and the tracer point (x, y).



Thus, ρL + ρR = f(r)r, where r = (x, y) and

r =
√
x2 + y2.

Since ∇×f(r)r = 0, it follows that∫
C
f(r)r · dr = 0

around any simple closed curve C.

Hence, ∫
C
ρL · dr +

∫
C
ρR · dr = 0

for every simple closed curve.

Thus averaging readings of the compensating

polar planimeter taken with the two configura-

tions eliminates error due to misalignment of

measuring wheel.



The design of the compensating polar planime-

ters allows more precise measurement.

By the 1930’s, compensating polar planime-

ters had essentially displaced the original Am-

sler design.


