Math 20E Homework Assignment 3 (updated 5/1/24)
Due 11:00pm Tuesday, May 7, 2023

1. Evaluate $\int_{\mathbf{c}} \mathbf{F} \cdot d \mathbf{s}$, where $\mathbf{F}(x, y)=\left(-x y, x^{2}\right)$ and \mathbf{c} is the path along the unit circle $x^{2}+y^{2}=1$ beginning at $(1,0)$ and ending at $(0,1)$.
2. Evaluate the line integral $\int_{\mathbf{c}} y z d x+x z d y+x y d z$, where \mathbf{c} consists of the straight-line segments joining $(1,0,0)$ to $(0,1,0)$ to $(0,0,1)$.
3. Evaluate the line integral $\int_{C}\left(y^{2}+2 x z\right) d x+\left(2 x y+z^{2}\right) d y+\left(2 y z+x^{2}\right) d z$, where C is an oriented simple curve from $(1,1,1)$ to $(0,2,3)$.
4. Let $\mathbf{c}(t)$ be a path and $\mathbf{T}(t)=\frac{\mathbf{c}^{\prime}(t)}{\left\|\mathbf{c}^{\prime}(t)\right\|}$ the unit tangent vector. What is $\int_{\mathbf{c}} \mathbf{T} \cdot d \mathbf{s}$?
5. Let S be the surface determined by the equation $x^{3}+3 x y+z^{2}=2$ with $z \geq 0$.
(a) Find a parametrization $\Phi: D \subseteq \mathbb{R}^{2} \rightarrow S \subseteq \mathbb{R}^{3}$.
(b) Find an equation for the tangent plane to S at the point $(1,1 / 3,0)$.
6. The hyperboloid S with equation $x^{2}+y^{2}-z^{2}=25$ is parametrized by the mapping

$$
\begin{gathered}
\Phi:[0,2 \pi] \times(-\infty, \infty) \longrightarrow \mathbb{R}^{3} \\
\Phi(\theta, u)=5(\cos (\theta) \cosh (u), \sin (\theta) \cosh (u), \sinh (u))
\end{gathered}
$$

[See Example 5 in Section 7.3 (pg. 381) of your textbook.]
(a) Find an equation for the plane tangent to the surface S at $\left(x_{0}, y_{0}, 0\right)$, where $x_{0}^{2}+y_{0}^{2}=25$.
(b) Show that the lines $\boldsymbol{\lambda}_{1}(t)=\left(x_{0}, y_{0}, 0\right)+t\left(-y_{0}, x_{0}, 5\right)$ and $\boldsymbol{\lambda}_{2}(t)=\left(x_{0}, y_{0}, 0\right)+t\left(y_{0},-x_{0}, 5\right)$ lie in the surface S and in the tangent plane to S at $\left(x_{0}, y_{0}, 0\right)$.
7. Let r and R be positive constants with $0<r<R$. The mapping

$$
\begin{aligned}
& \Phi:[0,2 \pi] \times[0,2 \pi] \longrightarrow \mathbb{R}^{3} \\
& \Phi(u, v)=((R+r \cos (u)) \cos (v),(R+r \cos (u)) \sin (v), r \sin (u))
\end{aligned}
$$

parametrizes a torus (or doughnut) T with minor radius r and major radius R.
(a) Show that all points (x, y, z) in the image T satisfy $\left(\sqrt{x^{2}+y^{2}}-R\right)^{2}+z^{2}=r^{2}$.
(b) Show that the image surface T is regular at all points.
8. Find area of the portion of the unit sphere that is inside the mouth of the cone $z \geq \sqrt{x^{2}+y^{2}}$.
9. The cylinder $x^{2}+y^{2}=x$ divides the unit sphere S into two regions S_{1} and S_{2}, where S_{1} is outside the cylinder and S_{2} is inside the cylinder.

Find the ratio $A\left(S_{1}\right) / A\left(S_{2}\right)$ of the areas of S_{1} and S_{2}.
10. Find the area of the surface S defined by $x+y+z=1$ with $x^{2}+3 y^{2} \leq 1$.

