Math 120A Homework 5 Due September 5, 2024

1.

10.

. Obtain the partial fraction decomposition of f(z) =

Suppose that zg is an isolated singularity of f(z) and that (z — 29)" f(2) is bounded near z.
Show that zg is either removable or a pole of order at most V.

. Suppose that zp is an isolated singularity of f(z) that is not removable. Show that zy is an

essential singularity of e/ (2),
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. g(2) = ¢* has an essential singularity at 0.

(a) Compute the residue of g(z) at 0.
(b) Evaluate the integral j{ g(z)dz.
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. Suppose P(z) and (Q(z) are polynomials with deg(P) < deg(Q) and such that the zeros of
Q(z) are simple zeros at the points zi,...,zy. Show that the partial fraction decomposition
of f(z) Pl is given b
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[Remark: The integrand — is called the Poisson kernel.]
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