1. Suppose that z_{0} is an isolated singularity of $f(z)$ and that $\left(z-z_{0}\right)^{N} f(z)$ is bounded near z_{0}. Show that z_{0} is either removable or a pole of order at most N.
2. Suppose that z_{0} is an isolated singularity of $f(z)$ that is not removable. Show that z_{0} is an essential singularity of $e^{f(z)}$.
3. Obtain the partial fraction decomposition of $f(z)=\frac{z^{6}}{\left(z^{2}+1\right)(z-1)^{2}}$.
4. $g(z)=e^{\frac{1}{z}}$ has an essential singularity at 0 .
(a) Compute the residue of $g(z)$ at 0 .
(b) Evaluate the integral $\oint_{|z|=2} g(z) d z$.
5. Evaluate $\oint_{|z|=2} \frac{z}{\cos (z)} d z$.
6. Suppose $P(z)$ and $Q(z)$ are polynomials with $\operatorname{deg}(P)<\operatorname{deg}(Q)$ and such that the zeros of $Q(z)$ are simple zeros at the points z_{1}, \ldots, z_{N}. Show that the partial fraction decomposition of $f(z)=\frac{P(z)}{Q(z)}$ is given by

$$
f(z)=\sum_{k=1}^{N} \frac{P\left(z_{k}\right)}{Q^{\prime}\left(z_{k}\right)} \cdot \frac{1}{z-z_{k}} .
$$

7. Show that $\int_{-\infty}^{\infty} \frac{x}{\left(x^{2}+2 x+2\right)\left(x^{2}+4\right)} d x=-\frac{\pi}{10}$.
8. Given $a>0$, show that $\int_{-\infty}^{\infty} \frac{\cos (a x)}{x^{4}+1} d x=\frac{\pi}{\sqrt{2}} e^{-\frac{a}{\sqrt{2}}}\left[\cos \left(\frac{a}{\sqrt{2}}\right)+\sin \left(\frac{a}{\sqrt{2}}\right)\right]$.
9. Show that $\int_{0}^{2 \pi} \frac{1}{a+b \sin (\theta)} d \theta=\frac{2 \pi}{\sqrt{a^{2}-b^{2}}}$, for $0<b<a$.
10. Show that $\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1-r^{2}}{1-2 r \cos (\theta)+r^{2}} d \theta=1$, for $0 \leq r<1$.
[Remark: The integrand $\frac{1-r^{2}}{1-2 r \cos (\theta)+r^{2}}$ is called the Poisson kernel.]
