1. Find the radius of convergence of each of the following series:
(a) $\sum_{n=0}^{\infty} z^{3^{n}}=z+z^{3}+z^{9}+z^{27}+z^{81}+z^{243} \cdots$
(b) $\sum_{p \text { prime }} z^{p}=z^{2}+z^{3}+z^{5}+z^{7}+z^{11}+z^{13}+\cdots$
2. Define $f(z):=\log (z)$.
(a) Find the power series expansion of $f(z)$ about the point $z=i-2$ and show that the radius of convergence is $R=\sqrt{5}$.
(b) Explain why this does not contradict the fact that $\log (z)$ has a discontinuity at $z=-2$.
3. Find the power series expansion of the principal branch $\operatorname{Tan}^{-1}(z)$ of the inverse tangent function about $z=0$. What is the radius of convergence?
Hint: Integrate the power series expansion of its derivative term by term.
4. Let E be a bounded subset of \mathbb{C} over which area integrals can be defined, and set

$$
f(w):=\iint_{E} \frac{1}{w-z} d x d y ; \quad \text { where } z=x+i y \text { and } w \in \mathbb{C} \backslash E .
$$

Show that $f(w)$ is analytic at ∞, and find a formula for the coefficients of the power series of $f(w)$ at ∞ in descending powers of w.
[Hint: Try a geometric series expansion.]
5. Define $f(z)=\frac{e^{z}}{1+z}$. Show that:
(a) $f(z)=1+\frac{1}{2} z^{2}-\frac{1}{3} z^{3}+\frac{3}{8} z^{4}-\frac{11}{30} z^{5}+\cdots$.
(b) The general $n^{\text {th }}$ term of the power series is given by $a_{n}=(-1)^{n}\left[\frac{1}{2!}-\frac{1}{3!}+\cdots+\frac{(-1)^{n}}{n!}\right]$, for $n \geq 2$.
(c) What is the radius of convergence of the series?
6. Show that the zeros of $\sin (z)$ are all simple.
7. Show that $\cos (z+w)=\cos (z) \cos (w)-\sin (z) \sin (w)$, assuming the identity holds for z and w real.
8. Show that if the analytic function $f(z)$ has a zero of order N at z_{0}, then $f(z)=g(z)^{N}$ for some function $g(z)$ analytic near z_{0} and satisfying $g^{\prime}\left(z_{0}\right) \neq 0$.
9. For each of the following functions, find the Laurent expansion centered at $z=-1$ that converges at $z=\frac{1}{2}$, and determine the largest open set (disk) on which the series converges.
(a) $\frac{1}{z^{2}-z}$
(b) $\frac{z-1}{z+1}$
10. Suppose that $f(z)$ is analytic on the punctured plane $D=\mathbb{C} \backslash\{0\}$. Show that there is a constant c such that $f(z)-\frac{c}{z}$ has a primitive in D. Provide a formula for c in terms of an integral of $f(z)$.

