1. Given a complex number a and a positive real number $\rho>0$. Show that the equation

$$
|z|^{2}-2 \operatorname{Re}(\bar{a} z)+|a|^{2}=\rho^{2}
$$

represents a circle centered at a with radius ρ.
[Hint: The set of points a distance ρ from a satisfy the equation $|z-a|=\rho$.]
2. Given a fixed $a \in \mathbb{C}$. Show that $\frac{|z-a|}{|1-\bar{a} z|}=1$ if $|z|=1$ and $1-\bar{a} z \neq 0$
3. Consider the polynomial $p(z)=z^{3}+z^{2}+z+1$
(a) Verify that i is a zero of p.
(b) Find the other two zeros of p.
4. For which integers n is i an $n^{\text {th }}$ root of unity?

5 . Let n be an integer with $n \geq 1$.
(a) Show that $1+z+z^{2}+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z}$.
(b) Show that $1+\cos (\theta)+\cos (2 \theta)+\cdots+\cos (n \theta)=\frac{1}{2}+\frac{\sin \left[\left(n+\frac{1}{2}\right) \theta\right]}{2 \sin \left(\frac{\theta}{2}\right)}$.
6. Show that

$$
\frac{(1+i \tan (\theta))^{n}}{(1-i \tan (\theta))^{n}}=\frac{1+i \tan (n \theta)}{1-i \tan (n \theta)}
$$

for every integer n.
7. Find the six distinct sixth roots of $z=-64$.
8. Given a complex number $z \in \mathbb{C}$ and the point P on the unit sphere $S \in \mathbb{R}^{3}$ corresponding to z under stereographic projection. Show that the antipodal point $-P$ corresponds to $-\frac{1}{\bar{z}}$ under stereographic projection.
9. Show that a rotation of the unit sphere S by π about the X-axis in \mathbb{R}^{3} corresponds to the inversion $z \mapsto \frac{1}{z}$ of the complex plane \mathbb{C} under stereographic projection.
[Hint: First verify that rotation of the unit sphere S by π about the X-axis in \mathbb{R}^{3} is represented by $(X, Y, Z) \mapsto(X,-Y,-Z)$.]
10. For each of the following set of points on the unit sphere S in \mathbb{R}^{3}, find an equation that determines the set of corresponding points in the complex plane \mathbb{C} under stereographic projection and describe that set geometrically.
(a) $\left\{(X, Y, Z) \in S \mid X^{2}+Y^{2}=1\right\}$.
(b) $\left\{(X, Y, Z) \in S \mid X^{2}+Z^{2}=1\right\}$.
(c) $\left\{(X, Y, Z) \in S \mid Y^{2}+Z^{2}=1\right\}$.

