Math 102 Homework Assignment 3
Due Thursday, February 3, 2022

1. Let A be a $m \times n$ matrix. Show that:
 (a) If $x \in N(A^T A)$, then $Ax \in R(A) \cap N(A^T)$.
 (b) $N(A^T A) = N(A)$.

2. Let V and W be subspaces of \mathbb{R}^n such that $V \subset W$. Show that $W^\perp \subset V^\perp$.

3. Suppose A is a symmetric $n \times n$ matrix. Let V be a subspace of \mathbb{R}^n with the property that $Ax \in V$ for every $x \in V$. Show that $Ay \in V^\perp$ for every $y \in V^\perp$. (Remark: The subspace V is said to be invariant under A. This exercise shows that if V is an invariant subspace under A, then so is V^\perp.)

4. Let $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ 3 \\ 8 \\ 2 \end{pmatrix}$.
 (a) Find the orthogonal projection of b onto $R(A)$.
 (b) Describe all least squares solutions to $Ax = b$.

5. Let A be a $n \times n$ matrix. Given that $A I \hat{x} + r = b$, show that \hat{x} is a least squares solution of the system $Ax = b$ and that r is the residual vector.

6. Given a $m \times n$ matrix A. Let \hat{x} be a solution to the least squares problem $Ax = b$. Show that a vector $y \in \mathbb{R}^n$ will also be a least squares solution if and only if $y = \hat{x} + z$ for some vector $z \in N(A)$.

7. Let P_3 be the inner product space of polynomials of degree less than 3 with inner product $\langle p, q \rangle = \int_{-1}^{1} p(t)q(t) \, dt$. Let $g_1(t) = 1$ and $g_2(t) = t$. Find a basis for $\text{Span}(g_1, g_2)^\perp$, the orthogonal complement of the subspace of P_3 spanned by g_1 and g_2.

8. Let u and v be any two vectors in an inner product space V.
 (a) Show that $\|u + v\|^2 + \|u - v\|^2 = 2\|u\|^2 + 2\|v\|^2$.
 (b) Show that if $\|u - v\|^2 = \|u\|^2 + \|v\|^2$, then u and v are orthogonal.