Math 142B Homework Assignment 5 Due 11:00pm Thursday, March 14, 2023

1. For n = 0, 1, 2, 3, ... let $a_n = \left[\frac{4+2(-1)^n}{5}\right]^n$. (a) Find

i. $\limsup(a_n)^{\frac{1}{n}}$ ii. $\limsup(a_n)^{\frac{1}{n}}$ iii. $\limsup\left|\frac{a_{n+1}}{a_n}\right|$ iv. $\liminf\left|\frac{a_{n+1}}{a_n}\right|$

- (b) Do the series $\sum a_n$ and $\sum (-1)^n a_n$ converge? Briefly justify your answers.
- (c) Find the radius of convergence and exact interval of convergence of the power series $\sum a_n x^n$ with a_n as above.
- 2. Let $\sum a_n x^n$ be a power series with radius of convergence R. Prove:
 - (a) If all the coefficients a_n are integers and $a_n \neq 0$ for infinitely many n, then $R \leq 1$.
 - (b) If $\limsup |a_n| > 0$, then $R \le 1$.
- 3. (a) Suppose $\sum a_n x^n$ has finite radius of convergence R and $a_n \ge 0$ for all n. Show that if the series converges at x = R, then it also converges at x = -R.
 - (b) Exhibit an example of a power series whose interval of convergence is exactly (-1, 1]. (Note: "Exhibit" means "Show that the example has the required properties.")

4. (a) Verify that
$$e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^{2n}$$
 for all $x \in \mathbb{R}$, since $e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$ for all $x \in \mathbb{R}$.

(b) Write $F(x) = \int_0^x e^{-t^2} dt$ as a power series. Be sure to briefly explain how you know that the power series for F(x) converges for all $x \in \mathbb{R}$.

5. Let $f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$ for $x \in \mathbb{R}$. Using only the properties of power series, show that f' = f.

6. For $x \in \mathbb{R}$, let

$$s(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$
$$c(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

Prove:

(a) s' = c and c' = -s. (b) $(s^2 + c^2)' = 0$. (c) $s^2 + c^2 = 1$. (page 2 of 2)

- 7. (a) Show that $\sum_{n=0}^{\infty} (-1)^n x^{2n} = \frac{1}{1+x^2}$ for $x \in (-1,1)$. (b) Show that $\arctan(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$ for $x \in (-1,1)$.
 - (c) Show that the equality in (b) also holds for x = 1. Use this to find a fun formula for π .
 - (d) What happens at x = -1?
- 8. Prove the following *comparison tests*. Let f and g be continuous functions on (a, b) such that $0 \le f(x) \le g(x)$ for all $x \in (a, b)$ and where a could be $-\infty$ and b could be $+\infty$.
 - (a) If $\int_{a}^{b} g(x) dx < \infty$, then $\int_{a}^{b} f(x) dx < \infty$. (b) If $\int_{a}^{b} f(x) dx = +\infty$, then $\int_{a}^{b} g(x) dx = +\infty$.
- 9. (a) Using a comparison test, show that $\int_{-\infty}^{\infty} e^{-x^2} dx < \infty$.
 - (b) Show that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$
- 10. Suppose f is continuous on (a, b), where a could be $-\infty$ and b could be $+\infty$. Show that if $\int_{a}^{b} |f(x)| dx < \infty$, then the integral $\int_{a}^{b} f(x) dx$ exists and is finite.