Math 142B Homework Assignment 4

Due 11:00pm Thursday, February 29, 2024

1. Let f be a continuous function on \mathbb{R} and define $F(x)=\int_{x-1}^{x+1} f(t) d t$ for $x \in \mathbb{R}$.

Show that F is differentiable on \mathbb{R} and compute F^{\prime}.
2. Consider $f_{n}(x)=n x^{n}(1-x)$ for $x \in[0,1]$.
(a) Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
(b) Does $f_{n} \rightarrow f$ uniformly on $[0,1]$? Be sure to justify your answer.
(c) Does $\int_{0}^{1} f_{n}(x) d x$ converge to $\int_{0}^{1} f(x) d x$? Be sure to justify your answer.
3. Prove that a sequence $\left(f_{n}\right)$ of functions on a set $S \subseteq \mathbb{R}$ converges uniformly to a function f on S if and only if $\lim _{n \rightarrow \infty} \sup \left\{\left|f(x)-f_{n}(x)\right| \mid x \in S\right\}=0$.
4. Prove that if $\left(f_{n}\right)$ is a sequence of functions uniformly continuous on an interval (a, b) and if $f_{n} \rightarrow f$ uniformly on (a, b), then f is also uniformly continuous on (a, b).
5. Let $\left(f_{n}\right)$ be a sequence of continuous functions on $[a, b]$ that converges uniformly to f on $[a, b]$. Show that if $\left(x_{n}\right)$ is a sequence in $[a, b]$ with $x_{n} \rightarrow x$, then $f_{n}\left(x_{n}\right) \rightarrow f(x)$.
6. Let $\left(f_{n}\right)$ be a sequence of functions on a set $S \subset \mathbb{R}$ such that $f_{n} \rightarrow f$ uniformly on S. Prove that $\left(f_{n}\right)$ is uniformly Cauchy on S.
7. Let $\left(f_{n}\right)$ be a sequence of bounded functions on a set S such that $f_{n} \rightarrow f$ uniformly on S. Prove that f is bounded on S.
8. (a) Show that if $\sum\left|a_{k}\right|<\infty$, then $\sum a_{k} x^{k}$ converges uniformly on $[-1,1]$ to a continuous function.
(b) Does $\sum_{n=1}^{\infty} \frac{1}{n^{2}} x^{n}$ represent a continuous function on $[-1,1]$?
9. (a) Let $0<a<1$. Show that the series $\sum_{n=0}^{\infty} x^{n}$ converges uniformly on $[-a, a]$ to $\frac{1}{1-x}$.
(b) Does the series $\sum_{n=0}^{\infty} x^{n}$ converge uniformly on $(-1,1)$ to $\frac{1}{1-x}$?
10. Let $\left(f_{n}\right)$ be a sequence of continuous functions on $[a, b]$ such that $\left(f_{n}(x)\right)$ is an increasing sequence of real numbers for each $x \in[a, b]$. Prove that if $f_{n} \rightarrow f$ pointwise on $[a, b]$ and if f is continuous on $[a, b]$, then $f_{n} \rightarrow f$ uniformly on $[a, b]$. (This is called Dini's theorem.)

