Math 142B Homework Assignment 3 Due 11:00pm Thursday, February 15, 2024

- 1. Let $f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q}, \\ 0 & \text{otherwise.} \end{cases}$
 - (a) Compute the upper and lower Darboux integrals for f on the interval [0, b].
 - (b) Is f integrable on [0, b]? Be sure to justify your answer.
- 2. Let f be a bounded function on [a, b]. Suppose there exist sequences (L_n) and (U_n) of upper and lower Darboux sums for f such that $\lim_{n \to \infty} (U_n - L_n) = 0$.

Show that f is integrable on [a, b] and that $\int_a^b f = \lim L_n = \lim U_n$.

3. Let f be integrable on [a, b], and suppose g is a function on [a, b] such that g(x) = f(x) except for finitely many $x \in [a, b]$.

Show that g is integrable on [a, b] and that $\int_a^b g = \int_a^b f$.

- 4. Show that if f is integrable on [a, b], then f is integrable on every interval $[c, d] \subseteq [a, b]$
- 5. Show that a decreasing function f on [a, b] is integrable.
- 6. Exhibit an example of a function f on [0, 1] that is not integrable but for which |f| is integrable.
- 7. Let f be a bounded function on [a, b] so that there is B > 0 for which $|f(x)| \leq B$ for all $x \in [a, b]$.
 - (a) Show that

$$U(f^2, P) - L(f^2, P) \le 2B [U(f, P) - L(f, P)]$$

for all partitions P of [a, b].

- (b) Show that if f is integrable on [a, b], then f^2 is also integrable on [a, b].
- 8. Let f and g be integrable functions on [a, b].
 - (a) Show that fg is integrable on [a, b].
 - (b) Show that $\max(f, g)$ and $\min(f, g)$ are integrable on [a, b].
- 9. Suppose f and g are continuous functions on [a, b] such that $\int_a^b f = \int_a^b g$. Prove that there exists $x \in (a, b)$ at which f(x) = g(x).
- 10. (a) Prove that if f and g are continuous functions on [a, b] with $g(t) \ge 0$ for all $t \in [a, b]$, then there exists $x \in (a, b)$ such that

$$\int_a^b f(t)g(t) \, dt = f(x) \int_a^b g(t) \, dt.$$

- (b) Show that the Intermediate Value Theorem for Integrals is a special case of part (a).
- (c) Does the conclusion in part (a) hold if [a, b] = [-1, 1] and f(t) = g(t) = t for all $t \in [a, b]$? Be sure to justify your answer.