Math 142B Homework Assignment 1

Due 11:00pm Wednesday, January 18, 2023

1. Let $f(x)=x^{2} \sin \left(\frac{1}{x}\right)$ for $x \neq 0$ and $f(0)=0$.
(a) Show that f is differentiable at each $x \neq 0$. (Use without proof the fact that $\sin (x)$ is differentiable and $\sin ^{\prime}(x)=\cos (x)$.)
(b) Use the definition of derivative to show that f is differentiable at $x=0$ and that $f^{\prime}(0)=0$.
(c) Show that f^{\prime} is not continuous at $x=0$.
2. Let $f(x)=x^{2} \sin \left(\frac{1}{x}\right)$ for $x \neq 0, f(0)=0$, and $g(x)=x$ for $x \in \mathbb{R}$.
(a) Calculate $f\left(\frac{1}{n \pi}\right)$ for $n= \pm 1, \pm 2, \pm 3, \ldots$
(b) Explain why $\lim _{x \rightarrow 0} \frac{g(f(x))-g(f(0))}{f(x)-f(0)}$ is meaningless; that is, fails to exist.
3. Let $f(x)= \begin{cases}x^{2} & \text { if } x \in \mathbb{Q}, \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} .\end{cases}$
(a) Show that f is continuous at $x=0$.
(b) Show that f is discontinuous at all $x \neq 0$.
(c) Show that f is differentiable at $x=0$. Note that the formula $f^{\prime}(x)=2 x$ does not apply to this function f.
4. Suppose f is differentiable at $x=x_{0}$.
(a) Show that $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=f^{\prime}\left(x_{0}\right)$.
(b) Show that $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}-h\right)}{2 h}=f^{\prime}\left(x_{0}\right)$.
5. Suppose that the function $f:(0, \infty) \rightarrow \mathbb{R}$ is differentiable and let $c>0$. Define $g:(0, \infty) \rightarrow \mathbb{R}$ by $g(x)=f(c x)$. Using only the definition of derivative (without appealing to the chain rule), show that $g^{\prime}(x)=c f^{\prime}(c x)$ for $x>0$.
6. Let g be a function that is differentiable on an open interval I containing x_{0}.

Define $h(x)= \begin{cases}\frac{g(x)-g\left(x_{0}\right)}{x-x_{0}} & \text { if } x \neq x_{0}, \\ g^{\prime}\left(x_{0}\right) & \text { if } x=x_{0} .\end{cases}$
(a) Show that h is continuous on I.
(b) Show that if $g^{\prime}\left(x_{0}\right)>0$, then there is a $\delta>0$ such that $\frac{g(x)-g\left(x_{0}\right)}{x-x_{0}}>0$ for $0<\left|x-x_{0}\right|<\delta$.
7. Show that $|\cos (x)-\cos (y)| \leq|x-y|$ for all $x, y \in \mathbb{R}$.
8. Let f be a function defined on \mathbb{R} with the property that $|f(x)-f(y)| \leq(x-y)^{2}$. Show that f is a constant function.
9. Let f and g be differentiable functions defined on an open interval I. Suppose $a<b \in I$ with $f(a)=f(b)=0$. Show that $f^{\prime}(x)+f(x) g^{\prime}(x)=0$ for some $x \in(a, b)$. [Hint: Consider $\left.h(x)=f(x) e^{g(x)}.\right]$
10. Show that $e x \leq e^{x}$ for all $x \in \mathbb{R}$.

