Math 142B Homework Assignment 1 Due 11:00pm Wednesday, January 18, 2023

- 1. Let $f(x) = x^2 \sin\left(\frac{1}{x}\right)$ for $x \neq 0$ and f(0) = 0.
 - (a) Show that f is differentiable at each $x \neq 0$. (Use without proof the fact that $\sin(x)$ is differentiable and $\sin'(x) = \cos(x)$.)
 - (b) Use the definition of derivative to show that f is differentiable at x = 0 and that f'(0) = 0.
 - (c) Show that f' is not continuous at x = 0.
- 2. Let $f(x) = x^2 \sin\left(\frac{1}{x}\right)$ for $x \neq 0$, f(0) = 0, and g(x) = x for $x \in \mathbb{R}$.
 - (a) Calculate $f\left(\frac{1}{n\pi}\right)$ for $n = \pm 1, \pm 2, \pm 3, \dots$
 - (b) Explain why $\lim_{x\to 0} \frac{g(f(x)) g(f(0))}{f(x) f(0)}$ is meaningless; that is, fails to exist.
- 3. Let $f(x) = \begin{cases} x^2 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$
 - (a) Show that f is continuous at x = 0.
 - (b) Show that f is discontinuous at all $x \neq 0$.
 - (c) Show that f is differentiable at x = 0. Note that the formula f'(x) = 2x does not apply to this function f.
- 4. Suppose f is differentiable at $x = x_0$.

(a) Show that
$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0).$$

(b) Show that $\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h} = f'(x_0)$

- 5. Suppose that the function $f:(0,\infty) \to \mathbb{R}$ is differentiable and let c > 0. Define $g:(0,\infty) \to \mathbb{R}$ by g(x) = f(cx). Using only the definition of derivative (without appealing to the chain rule), show that g'(x) = cf'(cx) for x > 0.
- 6. Let g be a function that is differentiable on an open interval I containing x_0 .

Define
$$h(x) = \begin{cases} \frac{g(x) - g(x_0)}{x - x_0} & \text{if } x \neq x_0, \\ g'(x_0) & \text{if } x = x_0. \end{cases}$$

- (a) Show that h is continuous on I.
- (b) Show that if $g'(x_0) > 0$, then there is a $\delta > 0$ such that $\frac{g(x) g(x_0)}{x x_0} > 0$ for $0 < |x x_0| < \delta$.
- 7. Show that $|\cos(x) \cos(y)| \le |x y|$ for all $x, y \in \mathbb{R}$.
- 8. Let f be a function defined on \mathbb{R} with the property that $|f(x) f(y)| \le (x y)^2$. Show that f is a constant function.
- 9. Let f and g be differentiable functions defined on an open interval I. Suppose $a < b \in I$ with f(a) = f(b) = 0. Show that f'(x) + f(x)g'(x) = 0 for some $x \in (a,b)$. [Hint: Consider $h(x) = f(x)e^{g(x)}$.]
- 10. Show that $e x \leq e^x$ for all $x \in \mathbb{R}$.