Math 142	A	
${\bf December}$	15 ,	$\boldsymbol{2017}$

Final Examination v. A	Name:	
(Total Points: 50)	PID:	

Instructions

- 1. Write your Name and PID in the spaces provided above.
- 2. Make sure your Name is on every page.
- 3. No calculators, tablets, phones, or other electronic devices are allowed during this exam.
- 4. Put away ANY devices that can be used for communication or can access the Internet.
- 5. You may use one handwritten page of notes, but no books or other assistance during this exam.
- 6. Read each question carefully and answer each question completely.
- 7. Write your solutions clearly in the spaces provided.
- 8. Show all of your work. No credit will be given for unsupported answers, even if correct.
- (2 points) 0. Carefully read and complete the instructions at the top of this exam sheet and any additional instructions given before the exam or written on the chalkboard during the exam.
- (6 points) 1. Let $\{a_n\}$ be a monotonically increasing sequence with a subsequence $\{a_{n_k}\}$ such that $a_{n_k} \to a$. Prove that $a_n \to a$.

$\mathbf{v.A}$	(page	2	of	8)
----------------	-------	---	----	----

Name: _____

(6 points) 2. Let $U \subseteq \mathbb{R}$ be a closed subset of \mathbb{R} that is dense in \mathbb{R} . Prove that $U = \mathbb{R}$.

$\mathbf{v.A}$	(page	3	\mathbf{of}	8)
– –	\ FO -			

Name:

(6 points) 3. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous at x_0 with $f(x_0) > 0$. Prove that there is a natural number n for which f(x) > 0 for all x in the interval $I := (x_0 - 1/n, x_0 + 1/n)$.

v. A	page	4	of	8)
* • 1 1	(Page	4	O.	\sim

(6 points) 4. Suppose S is a sequentially compact subset of $\mathbb R$ and that $f:S\to\mathbb R$ is continuous. Prove that f attains its maximum value. [Note: A sequentially compact set need not be an interval; thus, this generalizes the Extreme Value Theorem in your textbook to arbitrary sequentially compact sets.]

v. A	nage	5	\mathbf{of}	8)
v • 1 1	(Page	•	OI	$^{\circ}$

Name: _____

(6 points) 5. Let M be a natural number. Prove that $S_M = \left\{ \frac{1}{m} \middle| m \in \mathbb{N} \text{ and } 1 \leq m \leq M \right\}$ is sequentially compact.

v. A	page	6	\mathbf{of}	8)
v • 1 1	page	U	OI	\mathbf{c}

Name: _____

(6 points) 6. Suppose $f:(a,b)\to\mathbb{R}$ is differentiable and that $f':(a,b)\to\mathbb{R}$ is bounded. Prove that $f:(a,b)\to\mathbb{R}$ is uniformly continuous.

v. A	(page	7	\mathbf{of}	8)
------	-------	---	---------------	----

Name:

(6 points) 7. Prove that any function $f: \mathbb{Z} \to \mathbb{R}$ is uniformly continuous.

(6 points) 8. Suppose $f: \mathbb{R} \to \mathbb{R}$ has three derivatives and also satisfies the following three conditions:

- (1) There is a constant M > 0 such that $|f(x)| \leq M |x|^3$ for all x,
- (2) f(0) = 0, and
- (3) f'(0) = 0.

Show that f''(0) = 0.