Math 142A							
${\bf October}$	25,	2017					

Midterm Exam 1 v. A	Name:
(Total Points: 25)	PID:

Instructions

- 1. Write your Name and PID in the spaces provided above.
- 2. Make sure your Name is on every page.
- 3. No calculators, tablets, phones, or other electronic devices are allowed during this exam.
- 4. Put away ANY devices that can be used for communication or can access the Internet.
- 5. You may use one handwritten page of notes, but no books or other assistance during this exam.
- 6. Read each question carefully and answer each question completely.
- 7. Write your solutions clearly in the spaces provided.
- 8. Show all of your work. No credit will be given for unsupported answers, even if correct.
- (1 point) 0. Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
- (6 points) 1. Let $\{a_n\}$ be a sequence.
 - (a) Prove that if $\{a_n\}$ converges, then $\{|a_n|\}$ converges.

(b) Exhibit an example for which $\{|a_n|\}$ converges, but $\{a_n\}$ diverges.

v. A	(page	2	of	4)
* • 1 1	(Page	~	O.	41

Name: _____

(6 points) 2. Given a sequence $\{a_n\}$ with $\lim_{n\to\infty}a_n=a$. Show that if $\{a_{n_k}\}$ is a subsequence of $\{a_n\}$, then $\lim_{k\to\infty}a_{n_k}=a$.

$\mathbf{v. A}$	(page	3	\mathbf{of}	4)
	(Page	•	•	7	,

Name: _____

(6 points) 3. Let $\{a_n\}$ be a sequence. Prove that $\{a_n\}$ is bounded if and only if there is an interval [c,d] such that $\{a_n\}$ is a sequence in [c,d].

(6 points) 4. Define $\{a_n\}$ by $\begin{cases} a_1 &= \sqrt{2}, \\ a_{n+1} &= \sqrt{2+a_n} \text{ for } n \geq 1. \end{cases}$ (a) Show that $a_n \leq 2$ for all indices n.

(b) Show that $a_{n+1} > a_n$ for all indices n.

(c) State how you know that $\{a_n\}$ converges.

(d) Determine the value of $\lim_{n\to\infty} a_n$.