Math 20E Homework Assignment 6 Updated May 29
Due 11:00pm Thursday, June 6, 2024

1. Use the divergence theorem to calculate the flux of $\mathbf{F}=(x-y) \mathbf{i}+(y-z) \mathbf{j}+(z-x) \mathbf{k}$ out of the unit sphere $x^{2}+y^{2}+z^{2}=1$.
2. Let S be the boundary surface of a solid region W. Show that

$$
\iint_{S} \mathbf{r} \cdot \mathbf{n} d S=3 \text { volume }(W)
$$

Explain this result geometrically.
3. Let W be the pyramid with top vertex $(0,0,1)$, and base vertices at $(0,0,0),(1,0,0),(0,1,0)$, and $(1,1,0)$. Let S be the closed boundary surface of W, oriented outward from W. Let $\mathbf{F}(x, y, z)=\left(x^{2} y, 3 y^{2} z, 9 z^{2} x\right)$. Use Gauss' theorem to compute $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$.
4. Let $\mathbf{F}(x, y, z)=(x+y, z, z-x)$ and let \mathcal{S} be the boundary surface of the solid region between the paraboloid $z=9-x^{2}-y^{2}$ and the $x y$-plane. Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$.
5. Let W be a symmetric elementary region in \mathbb{R}^{3} with positively oriented closed boundary surface ∂W. Show that

$$
\iiint_{W} \frac{1}{r^{2}} d x d y d z=\iint_{\partial W} \frac{1}{r^{2}} \mathbf{r} \cdot \mathbf{n} d S
$$

where $\mathbf{r}=(x, y, z)$ and $r=\|\mathbf{r}\|=\sqrt{x^{2}+y^{2}+z^{2}}$.
6. Let $\mathbf{r}=(x, y, z)$ and $r=\|\mathbf{r}\|=\sqrt{x^{2}+y^{2}+z^{2}}$. Verify the following identities.
(a) $\nabla\left(\frac{1}{r}\right)=-\frac{1}{r^{3}} \mathbf{r}$ for $r \neq 0$; and, in general, $\nabla\left(r^{n}\right)=n r^{n-2} \mathbf{r}$, and $\nabla \log (r)=\frac{1}{r^{2}} \mathbf{r}$.
(b) $\nabla^{2}\left(\frac{1}{r}\right)=0$ for $r \neq 0$; and, in general, $\nabla^{2} r^{n}=n(n+1) r^{n-2}$.
(c) $\boldsymbol{\nabla} \cdot\left(\frac{1}{r^{3}} \mathbf{r}\right)=0$; and, in general, $\boldsymbol{\nabla} \cdot\left(r^{n} \mathbf{r}\right)=(n+3) r^{n}$
(d) $\boldsymbol{\nabla} \times \mathbf{r}=\mathbf{0}$; and, in general, $\boldsymbol{\nabla} \times\left(r^{n} \mathbf{r}\right)=\mathbf{0}$.
7. Let $\mathbf{F}(x, y, z)=y \mathbf{i}+[z \cos (y z)+x] \mathbf{j}+y \cos (y z) \mathbf{k}$.
(a) Verify that \mathbf{F} is irrotational.
(b) Find a scalar potential for \mathbf{F}.
8. Let $\mathbf{F}(x, y, z)=[2 x y z+\sin (x)] \mathbf{i}+x^{2} z \mathbf{j}+x^{2} y \mathbf{k}$.

Evaluate $\int_{\mathbf{c}} \mathbf{F} \cdot d \mathbf{s}$, where $\mathbf{c}(t)=\left(\cos ^{5}(t), \sin ^{3}(t), t^{4}\right)$ for $0 \leq t \leq \pi$.

