1. Compute the area enclosed by the ellipse $\left(\frac{x}{c}\right)^{2}+\left(\frac{y}{d}\right)^{2}=1$.
2. Find the area of the region between the x-axis and the cycloid parametrized by $\mathbf{r}(t)=(t-\sin (t), 1-\cos (t))$ with $0 \leq t \leq 2 \pi$.
3. Let $P(x, y)=\frac{-y}{x^{2}+y^{2}}$ and $Q(x, y)=\frac{x}{x^{2}+y^{2}}$, and let D be the unit disk $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.
(a) Evaluate the area integral $\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y$ over the unit disk D.
(b) Evaluate the line integral $\int_{\partial D} P d x+Q d y$ around ∂D, the unit circle with positive orientation.
(c) Briefly explain why Green's theorem failed.
4. Let $\mathbf{r}(x, y, z)=(x, y, z)$ and $r(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}=\|\mathbf{r}\|$. Verify the following identities.
(a) $\nabla\left(\frac{1}{r}\right)=-\frac{\mathbf{r}}{r^{3}}$.
(b) $\boldsymbol{\nabla} \cdot\left(\frac{\mathbf{r}}{r^{3}}\right)=0$.
(c) $\boldsymbol{\nabla} \times \mathbf{r}=\mathbf{0}$.
5. Let C be the closed, piecewise smooth curve formed by traveling in straight lines between the points $(0,0,0),(2,1,5),(1,1,3)$, and back to $(0,0,0)$ in that order. Use Stokes' theorem to evaluate the line integral

$$
\int_{C}(x y z) d x+(x y) d y+(x) d z
$$

6. Evaluate the surface integral $\iint_{S}(\boldsymbol{\nabla} \times \mathbf{F}) \cdot d \mathbf{S}$, where S is the portion the surface of a sphere defined by $x^{2}+y^{2}+z^{2}=1$ and $x+y+z \geq 1$, and where $\mathbf{F}=\mathbf{r} \times(\mathbf{i}+\mathbf{j}+\mathbf{k})$, with $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.
7. Let $\mathbf{F}=x^{2} \mathbf{i}+(2 x y+x) \mathbf{j}+z \mathbf{k}$. Let C be the circle $x^{2}+y^{2}=1$ and S the disk $x^{2}+y^{2} \leq 1$ within the plane $z=0$.
(a) Determine the flux of \mathbf{F} out of S.
(b) Determine the circulation of \mathbf{F} around C.
(c) Find the flux of $\boldsymbol{\nabla} \times \mathbf{F}$. Verify Stokes' theorem directly in this case.
8. Let $\mathbf{F}=(0,-z, 1)$. Let S be the spherical cap $x^{2}+y^{2}+z^{2}=1$, where $z \geq \frac{1}{2}$.
(a) Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ directly as a surface integral.
(b) Verify that $\mathbf{F}=\boldsymbol{\nabla} \times \mathbf{A}$, where $\mathbf{A}=(0, x, x z)$.
(c) Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ using Stokes' theorem.

(page 2 of 2)

9. Let $\mathbf{F}=\left(y^{2}, x^{2}, z^{2}\right)$. Verify that $\int_{\mathcal{C}_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{\mathcal{C}_{2}} \mathbf{F} \cdot d \mathbf{r}$, for any two simple closed curves $\mathcal{C}_{1}, \mathcal{C}_{2}$ going around a cylinder whose central axis is the z-axis; that is, any cylinder whose equation is of the form $x^{2}+y^{2}=R^{2}$.
