1. A metallic surface S is in the shape of a hemisphere $z=\sqrt{R^{2}-x^{2}-y^{2}}$, where (x, y) satisfies $x^{2}+y^{2} \leq R^{2}$. The mass density (mass per unit area) at $(x, y, z) \in S$ is given by $m(x, y, z)=x^{2}+y^{2}$. Find the total mass of S.
2. Find the average value of $f(x, y, z)=x+z^{2}$ on the truncated cone $z^{2}=x^{2}+y^{2}$, with $3 \leq z \leq 4$.
3. Evaluate the integral $\iint_{S}(1-z) d S$, where S is the graph of $z=1-x^{2}-y^{2}$, with $x^{2}+y^{2} \leq 1$.
4. Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, with $\mathbf{F}(x, y, z)=(x, y, z)$, and S the part of the plane $x+y+z=1$ with $x \geq 0, y \geq 0$, and $z \geq 0$.
5. Let \mathcal{S} be the ellipsoid $\left(\frac{x}{4}\right)^{2}+\left(\frac{y}{3}\right)^{2}+\left(\frac{z}{2}\right)^{2}=1$. Compute the flux of $\mathbf{F}=(0,0, z)$ over the portion of \mathcal{S} where $x \leq 0, y \leq 0, z \leq 0$ with upward-pointing normal.
6. Let $\mathbf{v}=(0,0, z)$ be the velocity field (in meters per second) in \mathbb{R}^{3}. Compute the volume flow rate (in cubic meters per second) through the upper upper hemisphere $(z \geq 0)$ of the unit sphere $x^{2}+y^{2}+z^{2}=1$.
7. A net with surface described by $y=0$ with $x^{2}+z^{2} \leq 1$ is dipped into a river in which the water flows according to the velocity field $\mathbf{v}=\left(x-y, z+y+4, z^{2}\right)$. Determine the volume flow rate across the net.
8. The electric field \mathbf{E} due to a point charge located at the origin in \mathbb{R}^{3} is given by $\mathbf{E}=k \frac{\mathbf{e}_{r}}{r^{2}}$, where $\mathbf{e}_{r}=\frac{\mathbf{r}}{r}$ is the unit radial vector, $r=\|\mathbf{r}\|=\sqrt{x^{2}+y^{2}+z^{2}}$ is distance from the origin, and k is a constant. (Note: The radial vector $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.)
(a) Compute the flux of \mathbf{E} out of a sphere of radius R centered at the origin.
(b) Notice that the flux does not depend on the radius of the sphere. Explain why this is true.
