Math 20E Homework Assignment 1 Due 11:00pm Tuesday, April 16, 2024

- 1. Find an equation for the tangent plane to $f(x,y,z) = \frac{xyz}{x^2 + y^2 + z^2}$ at $(x_0, y_0, z_0) = (1,0,1)$.
- 2. Let $g(u,v)=(e^u,u+\sin(v))$ and f(x,y,z)=(xy,yz). Compute $\mathbf{D}(g\circ f)(0,1,0)$ using the chain rule.
- 3. Evaluate the iterated integral $\int_1^3 \int_1^2 \frac{xy}{(x^2+y^2)^{\frac{3}{2}}} dx dy.$
- 4. Evaluate the double integral $\iint_R (x^2y^2 + x) dy dx$, where $R = [0, 2] \times [-1, 0]$.
- 5. Compute the volume of the solid bounded by the xz plane, the yz plane, the xy plane, the planes x = 1 and y = 1, and the surface $z = x^2 + y^4$.
- 6. Evaluate the double integral $\iint_D xy \, dA$, where D is the triangular region whose vertices are (0,0), (0,2), (2,0).
- 7. Evaluate $\iint_D y \, dA$, where D is the set of points (x,y) such that $0 \le \frac{2x}{\pi} \le y \le \sin(x)$.
- 8. Change the order integration and evaluate:

$$\int_{y=0}^{1} \int_{x=y}^{1} \sin(x^2) \, dx \, dy.$$

9. Change the order integration and evaluate:

$$\int_{y=0}^{1} \int_{x=\sqrt{y}}^{1} e^{x^3} \, dx \, dy.$$

10. Evaluate the integral $\iiint_W z \, dx \, dy \, dz$; where W is the region bounded by x=0, y=0, z=0, z=1, and the cylinder $x^2+y^2=1,$ with $x\geq 0, y\geq 0.$