Math 142B Homework Assignment 5

Due 11:00pm Thursday, June 6, 2024

1. Let $\sum a_{n} x^{n}$ be a power series with radius of convergence R. Prove:
(a) If all the coefficients a_{n} are integers and $a_{n} \neq 0$ for infinitely many n, then $R \leq 1$.
(b) If $\limsup \left|a_{n}\right|>0$, then $R \leq 1$.
2. (a) Suppose $\sum a_{n} x^{n}$ has finite radius of convergence R and $a_{n} \geq 0$ for all n. Show that if the series converges at $x=R$, then it also converges at $x=-R$.
(b) Exhibit an example of a power series whose interval of convergence is exactly $(-1,1]$. (Note: "Exhibit" means "Show that the example has the required properties.")
3. (a) Verify that $e^{-x^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{2 n}$ for all $x \in \mathbb{R}$, since $e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$ for all $x \in \mathbb{R}$.
(b) Write $F(x)=\int_{0}^{x} e^{-t^{2}} d t$ as a power series. Be sure to briefly explain how you know that the power series for $F(x)$ converges for all $x \in \mathbb{R}$.
4. Let $f(x)=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$ for $x \in \mathbb{R}$. Using only the properties of power series, show that $f^{\prime}=f$.
5. For $x \in \mathbb{R}$, let

$$
\begin{aligned}
& s(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \\
& c(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}
\end{aligned}
$$

Prove:
(a) $s^{\prime}=c$ and $c^{\prime}=-s$.
(b) $\left(s^{2}+c^{2}\right)^{\prime}=0$.
(c) $s^{2}+c^{2}=1$.
6. (a) Show that $\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}=\frac{1}{1+x^{2}}$ for $x \in(-1,1)$.
(b) Show that $\arctan (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}$ for $x \in(-1,1)$.
(c) Show that the equality in (b) also holds for $x=1$. Use this to find a fun formula for π.
(d) What happens at $x=-1$?
7. Find the Taylor series for $\cos (x)$ and indicate why it converges to $\cos (x)$ for all $x \in \mathbb{R}$.
8. Let $g(x)= \begin{cases}0 & \text { if } x=0, \\ e^{-1 / x^{2}} & \text { otherwise. }\end{cases}$
(a) Show that $g^{(n)}(0)$ for all $n \in \mathbb{N}$.
(b) Show that the Taylor series for g about 0 agrees with g only at $x=0$.

(page 2 of 2)

9. Prove that $|\sin (x+h)-(\sin (x)+h \cos (x))| \leq \frac{h^{2}}{2}$ for every pair of real numbers x and h.
10. Suppose f is differentiable on $(a, b), f^{\prime}$ is bounded on $(a, b), f^{\prime}$ never vanishes on (a, b), and the sequence $\left(x_{n}\right)$ in (a, b) converges to $\bar{x} \in(a, b)$.
Show that if $x_{n}=x_{n-1}-\frac{f\left(x_{n-1}\right)}{f^{\prime}\left(x_{n-1}\right)}$ for all $n \geq 0$, then $f(\bar{x})=0$.
