- 1. Let $\sum a_n x^n$ be a power series with radius of convergence R. Prove:
 - (a) If all the coefficients a_n are integers and $a_n \neq 0$ for infinitely many n, then $R \leq 1$.
 - (b) If $\limsup |a_n| > 0$, then $R \le 1$.
- 2. (a) Suppose $\sum a_n x^n$ has finite radius of convergence R and $a_n \ge 0$ for all n. Show that if the series converges at x = R, then it also converges at x = -R.
 - (b) Exhibit an example of a power series whose interval of convergence is exactly (-1, 1]. (Note: "Exhibit" means "Show that the example has the required properties.")

3. (a) Verify that
$$e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^{2n}$$
 for all $x \in \mathbb{R}$, since $e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$ for all $x \in \mathbb{R}$.

(b) Write $F(x) = \int_0^x e^{-t^2} dt$ as a power series. Be sure to briefly explain how you know that the power series for F(x) converges for all $x \in \mathbb{R}$.

4. Let
$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$
 for $x \in \mathbb{R}$. Using only the properties of power series, show that $f' = f$.

5. For $x \in \mathbb{R}$, let

$$s(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$
$$c(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

Prove:

- (a) s' = c and c' = -s. (b) $(s^2 + c^2)' = 0$. (c) $s^2 + c^2 = 1$.
- 6. (a) Show that $\sum_{n=0}^{\infty} (-1)^n x^{2n} = \frac{1}{1+x^2}$ for $x \in (-1,1)$. (b) Show that $\arctan(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$ for $x \in (-1,1)$.
 - (c) Show that the equality in (b) also holds for x = 1. Use this to find a fun formula for π .
 - (d) What happens at x = -1?
- 7. Find the Taylor series for $\cos(x)$ and indicate why it converges to $\cos(x)$ for all $x \in \mathbb{R}$.
- 8. Let $g(x) = \begin{cases} 0 & \text{if } x = 0, \\ e^{-1/x^2} & \text{otherwise.} \end{cases}$
 - (a) Show that $g^{(n)}(0)$ for all $n \in \mathbb{N}$.
 - (b) Show that the Taylor series for g about 0 agrees with g only at x = 0.

(page 2 of 2)

- 9. Prove that $|\sin(x+h) (\sin(x) + h\cos(x))| \le \frac{h^2}{2}$ for every pair of real numbers x and h.
- 10. Suppose f is differentiable on (a, b), f' is bounded on (a, b), f' never vanishes on (a, b), and the sequence (x_n) in (a, b) converges to $\bar{x} \in (a, b)$.

Show that if
$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$$
 for all $n \ge 0$, then $f(\bar{x}) = 0$.