Math 142B Homework Assignment 4 Due 11:00pm Thursday, May 23, 2024

- 1. Consider $f_n(x) = nx^n(1-x)$ for $x \in [0,1]$.
 - (a) Find $f(x) = \lim_{n \to \infty} f_n(x)$.
 - (b) Does $f_n \to f$ uniformly on [0, 1]? Be sure to justify your answer.
 - (c) Does $\int_0^1 f_n(x) dx$ converge to $\int_0^1 f(x) dx$? Be sure to justify your answer.
- 2. Prove that a sequence (f_n) of functions on a set $S \subseteq \mathbb{R}$ converges uniformly to a function f on S if and only if $\lim_{n \to \infty} \sup \{ |f(x) f_n(x)| \mid x \in S \} = 0.$
- 3. Prove that if (f_n) is a sequence of functions uniformly continuous on an interval (a, b) and if $f_n \to f$ uniformly on (a, b), then f is also uniformly continuous on (a, b).
- 4. Let (f_n) be a sequence of continuous functions on [a, b] that converges uniformly to f on [a, b]. Show that if (x_n) is a sequence in [a, b] with $x_n \to x$, then $f_n(x_n) \to f(x)$.
- 5. Let (f_n) be a sequence of functions on a set $S \subset \mathbb{R}$ such that $f_n \to f$ uniformly on S. Prove that (f_n) is uniformly Cauchy on S.
- 6. Let (f_n) be a sequence of bounded functions on a set S such that $f_n \to f$ uniformly on S. Prove that f is bounded on S.
- 7. (a) Show that if $\sum |a_k| < \infty$, then $\sum a_k x^k$ converges uniformly on [-1, 1] to a continuous function.
 - (b) Does $\sum_{n=1}^{\infty} \frac{1}{n^2} x^n$ represent a continuous function on [-1,1]?

8. (a) Let 0 < a < 1. Show that the series $\sum_{n=0}^{\infty} x^n$ converges uniformly on [-a, a] to $\frac{1}{1-x}$. (b) Does the series $\sum_{n=0}^{\infty} x^n$ converge uniformly on (-1, 1) to $\frac{1}{1-x}$?

9. Let (f_n) be a sequence of continuous functions on [a, b] such that $(f_n(x))$ is an increasing sequence of real numbers for each $x \in [a, b]$. Prove that if $f_n \to f$ pointwise on [a, b] and if f is continuous on [a, b], then $f_n \to f$ uniformly on [a, b]. (This is called *Dini's theorem.*)

10. For
$$n = 0, 1, 2, 3, ...$$
 let $a_n = \left[\frac{4 + 2(-1)^n}{5}\right]^n$.

(a) Find

i.
$$\limsup(a_n)^{\frac{1}{n}}$$

ii. $\limsup(a_n)^{\frac{1}{n}}$
iii. $\limsup\left|\frac{a_{n+1}}{a_n}\right|$
iv. $\liminf\left|\frac{a_{n+1}}{a_n}\right|$

- (b) Do the series $\sum a_n$ and $\sum (-1)^n a_n$ converge? Briefly justify your answers.
- (c) Find the radius of convergence and exact interval of convergence of the power series $\sum a_n x^n$ with a_n as above.