. . .

Version A

Instructions

- 1. You may use any type of calculator, but no other electronic devices during this exam.
- 2. You may use one page of notes, but no books or other assistance during this exam.
- 3. Write your Name, PID, and Section on the front of your Blue Book.
- 4. Write the Version of your exam on the front of your Blue Book.
- 5. Write your solutions clearly in your Blue Book
 - (a) Carefully indicate the number and letter of each question and question part.
 - (b) Present your answers in the same order they appear in the exam.
 - (c) Start each question on a new side of a page.
- 6. Read each question carefully, and answer each question completely.
- 7. Show all of your work; no credit will be given for unsupported answers.
- 0. (1 point) Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
- 1. (6 points) Consider the function

$$\mathbf{f}: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
$$\mathbf{f}(x, y, z) = (x^2 + y^2 + z^2, xy + yz + xz)$$

Find **Df** (2, 4, 6).

- 2. (6 points) Given $f(x, y) = \cos(2x + 5y)$.
 - (a) Find the 2^{nd} -order Taylor polynomial for f at (0,0).
 - (b) Find the quadratic (2^{nd} -order) approximation for f at (0.2, 0.5).
- 3. (6 points) Evaluate the iterated integral

$$\int_{x=0}^{16} \int_{y=\sqrt{x}}^{4} \sqrt{1+y^3} \, dy \, dx$$

by changing the order of integration. Be sure to clearly sketch the region of integration and indicate how you found the new limits of integration.

4. (6 points) Let D be the region bounded by the lines

$$x + y = 0$$
, $x + y = 4$, $x - y = 0$, $x - y = 4$.

Evaluate

$$\iint_D (x+y)\cos(x^2-y^2)\,dx\,dy$$

using the change of variables u = x + y, v = x - y.