Math 142B Homework Assignment 5

Due 11:00pm Wednesday, March 15, 2023

1. For $n=0,1,2,3, \ldots$ let $a_{n}=\left[\frac{4+2(-1)^{n}}{5}\right]^{n}$.
(a) Find
i. $\lim \sup \left(a_{n}\right)^{\frac{1}{n}}$
ii. $\lim \inf \left(a_{n}\right)^{\frac{1}{n}}$
iii. $\lim \sup \left|\frac{a_{n+1}}{a_{n}}\right|$
iv. $\liminf \left|\frac{a_{n+1}}{a_{n}}\right|$
(b) Do the series $\sum a_{n}$ and $\sum(-1)^{n} a_{n}$ converge? Briefly justify your answers.
(c) Find the radius of convergence and exact interval of convergence of the power series $\sum a_{n} x^{n}$ with a_{n} as above.
2. Let $\sum a_{n} x^{n}$ be a power series with radius of convergence R. Prove:
(a) If all the coefficients a_{n} are integers and $a_{n} \neq 0$ for infinitely many n, then $R \leq 1$.
(b) If limsup $\left|a_{n}\right|>0$, then $R \leq 1$.
3. (a) Suppose $\sum a_{n} x^{n}$ has finite radius of convergence R and $a_{n} \geq 0$ for all n. Show that if the series converges at $x=R$, then it also converges at $x=-R$.
(b) Exhibit an example of a power series whose interval of convergence is exactly $(-1,1]$. (Note: "Exhibit" means "Show that the example has the required properties.")
4. (a) Verify that $e^{-x^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{2 n}$ for all $x \in \mathbb{R}$, since $e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$ for all $x \in \mathbb{R}$.
(b) Write $F(x)=\int_{0}^{x} e^{-t^{2}} d t$ as a power series. Be sure to briefly explain how you know that the power series for $F(x)$ converges for all $x \in \mathbb{R}$.
5. Let $f(x)=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$ for $x \in \mathbb{R}$. Using only the properties of power series, show that $f^{\prime}=f$.
6. For $x \in \mathbb{R}$, let

$$
\begin{aligned}
& s(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \\
& c(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}
\end{aligned}
$$

Prove:
(a) $s^{\prime}=c$ and $c^{\prime}=-s$.
(b) $\left(s^{2}+c^{2}\right)^{\prime}=0$.
(c) $s^{2}+c^{2}=1$.
7. (a) Show that $\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}=\frac{1}{1+x^{2}}$ for $x \in(-1,1)$.
(b) Show that $\arctan (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}$ for $x \in(-1,1)$.
(c) Show that the equality in (b) also holds for $x=1$. Use this to find a fun formula for π.
(d) What happens at $x=-1$?
8. Prove the following comparison tests. Let f and g be continuous functions on (a, b) such that $0 \leq f(x) \leq g(x)$ for all $x \in(a, b)$ and where a could be $-\infty$ and b could be $+\infty$.
(a) If $\int_{a}^{b} g(x) d x<\infty$, then $\int_{a}^{b} f(x) d x<\infty$.
(b) If $\int_{a}^{b} f(x) d x=+\infty$, then $\int_{a}^{b} g(x) d x=+\infty$.
9. (a) Using a comparison test, show that $\int_{-\infty}^{\infty} e^{-x^{2}} d x<\infty$.
(b) Show that $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$.
10. Suppose f is continuous on (a, b), where a could be $-\infty$ and b could be $+\infty$. Show that if $\int_{a}^{b}|f(x)| d x<\infty$, then the integral $\int_{a}^{b} f(x) d x$ exists and is finite.

