Math 142B Homework Assignment 2 Due 11:00pm Wednesday, February 1, 2023

- 1. Suppose f is differentiable on \mathbb{R} , $1 \leq f'(x) \leq 2$ for all $x \in \mathbb{R}$, and f(0) = 0. Show that $x \leq f(x) \leq 2x$ for all $x \geq 0$.
- 2. Define $f: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$ by $f(x) = \tan(x)$ and let $g: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ be the inverse of f. Determine a formula for g'(y) for $y \in \mathbb{R}$. (See Exercise 29.16 in your text.)
- 3. Let f be differentiable on \mathbb{R} with $d = \sup\{|f'(x)| \mid x \in \mathbb{R}\} < 1$.
 - (a) Select $s_0 \in \mathbb{R}$ and define $s_n = f(s_{n-1})$ for $n \geq 1$. Show that (s_n) is a convergent sequence. (See Exercise 29.18 in your text.)

[Hint: Show (s_n) is Cauchy by first showing that $|s_{n+1} - s_n| \le d |s_n - s_{n-1}|$ for $n \ge 1$.]

- (b) Show that f has a fixed point. That is, show that $f(x_0) = x_0$ for some $x_0 \in \mathbb{R}$.
- 4. Let f be a function defined on some open interval (0, a), and define $g(y) = f\left(\frac{1}{y}\right)$ for $y \in \left(\frac{1}{a}, \infty\right)$ with $\frac{1}{a} := 0$ when $a = \infty$.

Show that $\lim_{x\to 0^+} f(x)$ exists if and only if $\lim_{y\to\infty} g(y)$ exists, in which case the limits are equal.

5. Let f be differentiable on some interval (c, ∞) such that $\lim_{x \to \infty} [f(x) + f'(x)] = L$, with L finite.

Show that $\lim_{x\to\infty} f(x) = L$ and $\lim_{x\to\infty} f'(x) = 0$. [Hint: Write $f(x) = \frac{f(x) e^x}{e^x}$.]

6. For $x \in \mathbb{R}$, let

$$f(x) = x + \cos(x)\sin(x)$$
 and $g(x) = e^{\sin(x)}\left[x + \cos(x)\sin(x)\right]$.

- (a) Show that $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = +\infty$.
- (b) Show that $f'(x) = 2 [\cos(x)]^2$ and $g'(x) = e^{\sin(x)} \cos(x) [2\cos(x) + f(x)]$.
- (c) Show that $\frac{f'(x)}{g'(x)} = \frac{2e^{-\sin(x)}\cos(x)}{2\cos(x) + f(x)}$ if $\cos(x) \neq 0$ and x > 3.
- (d) Show that $\lim_{x \to \infty} \frac{2e^{-\sin(x)}\cos(x)}{2\cos(x) + f(x)} = 0$ and yet $\lim_{x \to \infty} \frac{f(x)}{g(x)}$ is not defined.
- 7. Find the Taylor series for cos(x) and indicate why it converges to cos(x) for all $x \in \mathbb{R}$.
- 8. Let $g(x) = \begin{cases} 0 & \text{if } x = 0, \\ e^{-1/x^2} & \text{otherwise.} \end{cases}$
 - (a) Show that $g^{(n)}(0)$ for all $n \in \mathbb{N}$.
 - (b) Show that the Taylor series for g about 0 agrees with g only at x=0.
- 9. (a) Show that $x^4 + x^3 1 = 0$ has exactly two solutions.
 - (b) Use Newton's method or the secant method to approximate the solutions of $x^4 + x^3 1 = 0$ to six-place accuracy. Yes, you should use software or a calculator for the numerical computations.
- 10. Suppose f is differentiable on (a, b), f' is bounded on (a, b), f' never vanishes on (a, b), and the sequence (x_n) in (a, b) converges to $\bar{x} \in (a, b)$.

Show that if $x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$ for all $n \ge 0$, then $f(\bar{x}) = 0$.