Math 142B Homework Assignment 2

Due 11:00pm Wednesday, February 1, 2023

1. Suppose f is differentiable on $\mathbb{R}, \quad 1 \leq f^{\prime}(x) \leq 2$ for all $x \in \mathbb{R}$, and $f(0)=0$. Show that $x \leq f(x) \leq 2 x$ for all $x \geq 0$.
2. Define $f:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}$ by $f(x)=\tan (x)$ and let $g: \mathbb{R} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ be the the inverse of f. Determine a formula for $g^{\prime}(y)$ for $y \in \mathbb{R}$. (See Exercise 29.16 in your text.)
3. Let f be differentiable on \mathbb{R} with $d=\sup \left\{\left|f^{\prime}(x)\right| \mid x \in \mathbb{R}\right\}<1$.
(a) Select $s_{0} \in \mathbb{R}$ and define $s_{n}=f\left(s_{n-1}\right)$ for $n \geq 1$. Show that $\left(s_{n}\right)$ is a convergent sequence. (See Exercise 29.18 in your text.)
[Hint: Show $\left(s_{n}\right)$ is Cauchy by first showing that $\left|s_{n+1}-s_{n}\right| \leq d\left|s_{n}-s_{n-1}\right|$ for $n \geq 1$.]
(b) Show that f has a fixed point. That is, show that $f\left(x_{0}\right)=x_{0}$ for some $x_{0} \in \mathbb{R}$.
4. Let f be a function defined on some open interval $(0, a)$, and define $g(y)=f\left(\frac{1}{y}\right)$ for $y \in\left(\frac{1}{a}, \infty\right)$ with $\frac{1}{a}:=0$ when $a=\infty$.
Show that $\lim _{x \rightarrow 0^{+}} f(x)$ exists if and only if $\lim _{y \rightarrow \infty} g(y)$ exists, in which case the limits are equal.
5. Let f be differentiable on some interval (c, ∞) such that $\lim _{x \rightarrow \infty}\left[f(x)+f^{\prime}(x)\right]=L$, with L finite. Show that $\lim _{x \rightarrow \infty} f(x)=L$ and $\lim _{x \rightarrow \infty} f^{\prime}(x)=0 .\left[\right.$ Hint: Write $\left.f(x)=\frac{f(x) e^{x}}{e^{x}}.\right]$
6. For $x \in \mathbb{R}$, let

$$
f(x)=x+\cos (x) \sin (x) \quad \text { and } \quad g(x)=e^{\sin (x)}[x+\cos (x) \sin (x)] .
$$

(a) Show that $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=+\infty$.
(b) Show that $f^{\prime}(x)=2[\cos (x)]^{2}$ and $g^{\prime}(x)=e^{\sin (x)} \cos (x)[2 \cos (x)+f(x)]$.
(c) Show that $\frac{f^{\prime}(x)}{g^{\prime}(x)}=\frac{2 e^{-\sin (x)} \cos (x)}{2 \cos (x)+f(x)}$ if $\cos (x) \neq 0$ and $x>3$.
(d) Show that $\lim _{x \rightarrow \infty} \frac{2 e^{-\sin (x)} \cos (x)}{2 \cos (x)+f(x)}=0$ and yet $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}$ is not defined.
7. Find the Taylor series for $\cos (x)$ and indicate why it converges to $\cos (x)$ for all $x \in \mathbb{R}$.
8. Let $g(x)= \begin{cases}0 & \text { if } x=0, \\ e^{-1 / x^{2}} & \text { otherwise. }\end{cases}$
(a) Show that $g^{(n)}(0)$ for all $n \in \mathbb{N}$.
(b) Show that the Taylor series for g about 0 agrees with g only at $x=0$.
9. (a) Show that $x^{4}+x^{3}-1=0$ has exactly two solutions.
(b) Use Newton's method or the secant method to approximate the solutions of $x^{4}+x^{3}-1=0$ to six-place accuracy. Yes, you should use software or a calculator for the numerical computations.
10. Suppose f is differentiable on $(a, b), f^{\prime}$ is bounded on $(a, b), f^{\prime}$ never vanishes on (a, b), and the sequence $\left(x_{n}\right)$ in (a, b) converges to $\bar{x} \in(a, b)$.
Show that if $x_{n}=x_{n-1}-\frac{f\left(x_{n-1}\right)}{f^{\prime}\left(x_{n-1}\right)}$ for all $n \geq 0$, then $f(\bar{x})=0$.

