A Note on Complex Differentials

1. Real Differentials

We have defined the differential of a differentiable real-valued function $f(x, y)$ by

$$
d f:=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y .
$$

Line integrals of a differential of a real-valued function are independent of path: $\int_{\gamma} d f=f(B)-f(A)$ along any smooth path γ from the point A to the point B.

We say that the differential $d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y$ is exact.

2. Complex Differentials

Differentials of complex-valued functions of a complex variable are related to differentials of realvalued functions of two real variables via the natural correspondence between \mathbb{C} and \mathbb{R}^{2} given by $z=x+i y \longleftrightarrow(x, y)$.

Theorem 1. Given $h(z)=u(x, y)+i v(x, y)$ with continuous partial derivatives. Then,

$$
d h=\frac{\partial h}{\partial x} d x+\frac{\partial h}{\partial y} d y .
$$

The point: Under the natural correspondence between \mathbb{C} and \mathbb{R}^{2}, the formula for the differential of a complex-valued function of a complex variable is identical in form to the formula for a real-valued function of two real variables.

Proof.

$$
\begin{aligned}
d h & =d u+i d v \\
& =\left(\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y\right)+i\left(\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y\right) \\
& =\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right) d x+\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right) d y \\
& =\frac{\partial h}{\partial x} d x+\frac{\partial h}{\partial y} d y .
\end{aligned}
$$

Theorem 2. If h is analytic, then $d h=h^{\prime}(z) d z$

Proof. Since h is analytic, we may write

$$
\begin{equation*}
h^{\prime}(z)=\frac{\partial h}{\partial x}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} . \tag{1}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
h^{\prime}(z) d z & =\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right)(d x+i d y) \\
& =\left(\frac{\partial u}{\partial x} d x-\frac{\partial v}{\partial x} d y\right)+i\left(\frac{\partial v}{\partial x} d x+\frac{\partial u}{\partial x} d y\right) \\
& =\left(\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y\right)+i\left(\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y\right) \text { by the Cauchy-Riemann equations } \\
& =d u+i d v \\
& =d h
\end{aligned}
$$

Exercise: When h is analytic, it is also true that

$$
\begin{equation*}
h^{\prime}(z)=\frac{1}{i} \frac{\partial h}{\partial y} . \tag{2}
\end{equation*}
$$

Starting with equation (2), verify that $d h=h^{\prime}(z) d z$.

