A Note on Complex Differentials

1. Real Differentials

We have defined the differential of a differentiable real-valued function f(x, y) by

$$df := \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy.$$

Line integrals of a differential of a real-valued function are independent of path: $\int_{\gamma} df = f(B) - f(A)$ along any smooth path γ from the point A to the point B.

We say that the differential $df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$ is *exact*.

2. Complex Differentials

Differentials of complex-valued functions of a complex variable are related to differentials of realvalued functions of two real variables via the natural correspondence between \mathbb{C} and \mathbb{R}^2 given by $z = x + iy \longleftrightarrow (x, y)$.

Theorem 1. Given h(z) = u(x, y) + iv(x, y) with continuous partial derivatives. Then,

$$dh = \frac{\partial h}{\partial x}dx + \frac{\partial h}{\partial y}dy.$$

The point: Under the natural correspondence between \mathbb{C} and \mathbb{R}^2 , the formula for the differential of a complex-valued function of a complex variable is identical in form to the formula for a real-valued function of two real variables.

Proof.

$$\begin{split} dh &= du + i \, dv \\ &= \left(\frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy\right) + i \left(\frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy\right) \\ &= \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}\right) dx + \left(\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y}\right) dy \\ &= \frac{\partial h}{\partial x} dx + \frac{\partial h}{\partial y} dy. \end{split}$$

Theorem 2. If h is analytic, then dh = h'(z) dz

Proof. Since h is analytic, we may write

$$h'(z) = \frac{\partial h}{\partial x} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}.$$
(1)

Thus,

$$h'(z) dz = \left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right) (dx + i dy)$$

= $\left(\frac{\partial u}{\partial x} dx - \frac{\partial v}{\partial x} dy\right) + i \left(\frac{\partial v}{\partial x} dx + \frac{\partial u}{\partial x} dy\right)$
= $\left(\frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy\right) + i \left(\frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy\right)$ by the Cauchy-Riemann equations
= $du + i dv$
= dh .

Exercise: When h is analytic, it is also true that

$$h'(z) = \frac{1}{i} \frac{\partial h}{\partial y}.$$
(2)

Starting with equation (2), verify that dh = h'(z) dz.